Premium

R&D of mass-producible PERC cells with average conversion efficiency over 20%

Facebook
Twitter
LinkedIn
Reddit
Email

By Wei Shan, Chief Scientist and Head of R&D., JA Solar Holdings Co. Ltd, JA Solar USA; Xiulin Jiang, R&D Center, JA Solar Holdings Co. Ltd.; Haibin Yu, R&D Center, JA Solar Holdings Co. Ltd.; Yong Liu, Chief Operations Officer, R&D Center, JA Solar Holdings Co. Ltd.

A recent revitalization of the passivated emitter and rear cell (PERC) concept in the silicon PV industry has resulted in solar energy conversion efficiencies of greater than 20% being achieved on p-type solargrade single-crystalline silicon (mono-Si) wafers during the past two years or so, thanks to technological advance in the use of aluminium oxide for silicon surface passivation. The research efforts carried out at JA Solar in developing an industry version of PERC cells that can be mass produced utilizing the existing conventional back-surface field (BSF) cell manufacturing platform with moderate retrofitting have yielded 20.5% average conversion efficiency, which can be consistently achieved on p-type Si wafers grown by the Czochralski method. Moreover, the experimental results showed that an average conversion efficiency of 20% is achievable when, in combination with JA Solar’s proprietary light-trapping technique, the same technological approach is applied to the cells using high-quality polycrystalline silicon (multi-Si) wafers produced by the seeded directional solidification method.

Published In

Premium
Looking back, 2014 was a year of convalescence for a PV industry still battered and bruised from a period of ferocious competition. End-market demand continued apace, with analysts towards the end of 2014 predicting the year would see between around 45 and 50GW of deployment. That has begun to feed through to the supplier end of the market, with all the main manufacturers announcing capacity expansions in 2015 and further ahead.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 1, 2024
Dallas, Texas
Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA