By Silke Christiansen, Max Planck Institute for the Science of Light (MPL), and Institute of Photonic Technology (IPHT),; Michael Kiometzin, Max Planck Institute for the Science of Light (MPL) and Institute of Photonic Technology (IPHT)
Advances in nanofabrication for enhancing the efficiency of optical devices, such as solar cells and photo-detectors, via nanostructuring have attracted a great deal of interest. A photoconversion strategy employing nanorods (NRs) has emerged as a powerful way of overcoming the limitations of planar wafer-based or thin-film solar cells. But there is also a broad spectrum of challenges to be tackled when it comes to putting into practice cost-effective NR solar cell concepts. ROD-SOL is a 10-partner, ‘nanotechnology for energy’ project with end-users, equipment manufacturers and institutes from six countries forming the consortium. The aim of the project is to provide the photovoltaic market with a highly efficient (> 10%), potentially low-cost, thin-film solar cell concept on glass, based on silicon nanorods. This paper presents the project’s achievements and discusses what the future might hold for nanotech-based solar energy production.