Requires Subscription: Photovoltaics International Archive

Surface modification for efficiency improvement of inline solar cell manufacture

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Johan Hoogboom, Global R&D Coordinator for Silicon Photovoltaics, Mallinckrodt Baker B.V; Jan Oosterholt, R&D Department, Mallinckrodt Baker B.V; Sabrina Ritmeijer, Mallinckrodt Baker B.V; Luuk Groenewoud, R&D Manager, Mallinckrodt Baker B.V; Arno Stassen, Research Scientist, ECN; Jan H. Bultman, Energy Research Centre Group Leader, ECN; Kees Tool, Senior Research Scientist & Project leader, ECN; Martien Koppes, ECN

Inline processing, one of the fastest-growing production processes for crystalline silicon solar cells, uses continuously operated belt furnaces to achieve higher overall throughput compared with traditional batch processing. A second, major advantage of inline processing is improved manufacturing yields through reduced breakage of today’s thinner, increasingly delicate wafers. This is accomplished by eliminating several handling steps unique to batch processing techniques. This paper describes the influence of ECN-Clean, as developed by Mallinckrodt Baker and ECN in 2006, whose application increases the efficiency of solar cells produced using inline processing by approximately 0.3 percent absolute, compared with standard inline processing.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy81NWMxYTJkM2IyLXN1cmZhY2UtbW9kaWZpY2F0aW9uLWZvci1lZmZpY2llbmN5LWltcHJvdmVtZW50LW9mLWlubGluZS1zb2xhci1jZWxsLW1hbnVmYWN0dXJlLnBkZg==

Published In

Photovoltaics International Archive
The second edition of Photovoltaics International was published in November 2008. It includes the cost benefits of conversion of used 200mm semiconductor fabs for the PV industry by CH2M Hill in Fab & Facilities, in-line plasma-chemical etching from Fraunhofer IWS in Cell Processing and NREL presents design criteria for back- and front-sheet materials in PV Modules.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA