PVI Paper

Weighing the merits of solar power plants using concentration photovoltaics

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Geoffrey S. Kinsey, Senior Director of Research and Development, Amonix

In trying to introduce its relatively new technology to traditional utility customers, the photovoltaic industry often finds itself in the awkward position of trying to sell a product to a customer who may not want to buy. The up-front capital costs of new solar plants (that deliver power only intermittently) can be less than appealing. Large-scale grid integration will therefore be accelerated by PV technologies that best fit the profile of traditional power sources. In addition to low cost, this includes high capacity factors and the ability to better match demand during daylight hours.
Concentrator photovoltaic (CPV) power plants are now being integrated into the grid at megawatt scales. By performing light collection using acrylic, silicone, or glass optics instead of semiconductors, the material cost balance of PV is fundamentally shifted. The world’s most efficient solar cells can then be employed, and maintaining tracking of the sun becomes economically favorable across vast sunny locales worldwide. With AC system efficiencies in excess of 25%, the resulting CPV power plants produce high energy yields throughout the year and deliver the high capacity factors demanded by utility customers. Since semiconductors are a minority component cost, manufacturing capital costs are lower than for any other PV technology, allowing for rapid scale-up and field deployment. This article will describe the state of the art of CPV technology, field performance results, and the outlook for near-term deployments.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9jZmE5OTQ0NzczLXdlaWdoaW5nLXRoZS1tZXJpdHMtb2Ytc29sYXItcG93ZXItcGxhbnRzLXVzaW5nLWNvbmNlbnRyYXRpb24tcGhvdG92b2x0YWljcy5wZGY=

Published In

PVI Issue
The 15th edition of Photovoltaics International hopes to bring some optimism to 2012 by tackling the key factors on how to cope with the current situation. Contributions come from MIT on using TCAD as a viable method for modelling metal impurity evolution; Alternative Energy Investing presents a comprehensive look at materials cost; and efficiency improvements are on offer by ECN. REC Solar and Tata BP Solar report on module lifetime and IMS Research gives us a brief rundown of 2012 global market expectations.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!