• An overview of module fabrication technologies for back-contact solar cells

    Apart from aesthetics, the gain in electrical performance of back-contact solar cells and modules is particularly attractive compared to conventional PV modules. This major benefit results from getting rid of (the majority of ) the metallization at the front, and providing all the cell contacts at the back. An overview is presented here of the different concepts put forward by different institutes and companies around the world for such back-contact modules. The different types of state-of-the-art back-contact cell are first introduced, together with their corresponding contacting and interconnection schemes. Keeping in mind the reference module technology for two-side-contacted cells as a starting point, each module concept is then briefly discussed in terms of technology and level of maturity. Finally, the main technological differences are summarized.

  • Evaluation of creep in thermoplastic encapsulant materials deployed outdoors

    There has been recent interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically cross-linked materials, for example ethylene-vinyl acetate. The related motivations include the desire to reduce lamination time or temperature, to use less moisture-permeable materials, and to use materials with better corrosion characteristics or improved electrical resistance. However, the use of any thermoplastic material in a hightemperature environment raises safety and performance concerns, as the standardized tests do not currently include exposure of the modules to temperatures in excess of 85°C, even though fielded modules may experience temperatures above 100°C. Eight pairs of crystalline silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules were constructed using different encapsulant materials, of which only two were designed to chemically cross-link. One module set with insulation on the back side was exposed outdoors in Arizona in the summer, and an identical set was exposed in environmental chambers. High-precision creep measurements (±20μm) and performance measurements indicated that, despite many of these polymeric materials being in the melt state during outdoor deployment, there was very little creep because of the high viscosity of the materials, the temperature heterogeneity across the modules, and the formation of chemical cross-links in many of the encapsulants as they aged. In the case of the crystalline silicon modules, the physical restraint of the backsheet reduced the creep further.

  • Dynamic stress tests on PV modules – derivation of extended stress scenarios

  • Predicted thermal stresses in a photovoltaic module (PVM)

  • Non-destructive techniques for quality control of photovoltaic modules

  • Studying the lifetime of crystalline PV modules by interpreting the acceleration test data with stat

Newsletter

Preview Latest
Subscribe
We won't share your details - promise!

Publications

  • Photovoltaics International 23rd Edition

    This issue of Photovoltaics International, our 23rd, offers key insights into some of the technologies that are ready to move from lab to fab in support of these goals. ISC Konstanz offer a glimpse of what the low-cost, high-efficiency solar cells of the future might look like. On page 35 the institute’s authors give an overview of what they call Konstanz’ “technology zoo”, encompassing their so-called BiSoN, PELICAN and ZEBRA cell concepts, all of which are aimed at increasing energy yield at the lowest possible cost.

  • Manufacturing The Solar Future: The 2013 Production Annual

    In the ever-changing global solar markets, cost reduction and measures to increase cell efficiencies are the key tools available to PV manufacturers to create new opportunities and drive your business to the next level. Manufacturing the Solar Future 2013 is the third in the Photovoltaics International PV Production Annual series, delivering the next instalment of in-depth technical manufacturing information on PV production processes designed to help you gain the competitive edge.

Partners

Acknowledgements

Solar Media