EU-funded project attempts to revive potential of BIPV

Facebook
Twitter
LinkedIn
Reddit
Email

Smartflex, a three-year project part-funded by the EU, which began in April aimed at making it possible for architects to create custom building-integrated photovoltaic (BIPV) modules, has reached a number of milestones in its progress including the development of a pilot production line.

The intention is that architects “will be able to use an intuitive piece of planning software to design solar modules that integrate into their buildings as desired,” according to Paul Grunow, director of the Photovoltaik-Institut Berlin.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

The project aims to develop “a prototype production line capable of manufacturing photovoltaic modules in accordance with architects’ individual requirements,” according to publicity materials.

“What makes the project unique is its aim to produce these remarkable solar elements using an automated process, reducing manual operations to a minimum,” said Paul Grunow.

The team behind the project, along with the Photovoltaik-Institut includes the Applied Research Institute for Prospective Technologies (ProTech) in Vilnius, Lithuania, glass manufacturer Glassbel, engineering firm Mondragon Assembly, the Swiss BIPV Competence Centre (SUPSI) and others. Around €2.9 million (US$3.96 million) of the project’s cost is funded by the EU Seventh Framework Programme for Research and Innovation.

Three months after it was launched in early April, the team told PV Tech it has now developed a prototype maximum power point tracker, which is in testing for compatibility with the microinverter that will be used for the project.

In addition, the software that will allow architects their freedom to design PV modules in the required size, shape or colour, has also now been completed, as has development of the photovoltaic module manufacturing process and equipment that will be used, the team said.

The project’s test building is the Glasbel headquarters, in Klaipeda, Lithuania. The building’s 200 square metre façade is the main test surface for modules, while modules of up to 3.5 metres in length and up to an output of 750Wp are being used.   

Read Next

June 13, 2025
US renewables developer Invenergy has started construction of a 240MW solar PV plant in Franklin County, Ohio, US.
June 13, 2025
Indian solar developer Solarium Green Energy has planned to build a 1GW module manufacturing plant in the western Indian state of Gujarat.
Premium
June 13, 2025
The European PPA space could see more tailored PPAs and hybrid deals, according to experts at the Renewables Procurement & Revenue summit.
June 13, 2025
As our annual PV ModuleTech USA event kicks off in Napa, California next week, “uncertainty” is the watchword for the US solar industry.
June 13, 2025
Chinese solar manufacturer LONGi has launched a new Hybrid Interdigitated Back-Contact (HIBC) module during SNEC 2025, held in Shanghai, China.
Premium
June 13, 2025
SNEC 2025 takeaways: TOPCon modules set benchmark power at 650W, a wave of BC modules and perovskite tandem cells gains momentum.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand