Fraunhofer ISE proves Agrophotovoltaics pilot project feasibility

Facebook
Twitter
LinkedIn
Reddit
Email
A year-long study at the pilot project, which uses bifacial solar modules to provide as much sunlight to the crops by limiting the shading impact on crop growth, has provided encouraging results. Image: Fraunhofer ISE

The conflict of agricultural land use for solar power plants could be a thing of the past after a science driven agrophotovoltaics (APV) pilot project near Lake Constance in Germany, led by Fraunhofer ISE has proved the viability of dual land use. 

A year-long study at the pilot project, which uses bifacial solar modules to provide as much sunlight to the crops by limiting the shading impact on crop growth, has provided encouraging results. 

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Winter wheat, potatoes, celeriac and clover grass were said to have been the first crops to be tested, using a south-west orientation of the APV system and extra distance between the five meter high rows of bifacial glass-glass PV modules to ensure that the crops were exposed to uniform solar radiation.

Winter wheat, potatoes, celeriac and clover grass were said to have been the first crops to be tested, using a south-west orientation of the APV system and extra distance between the five meter high rows of bifacial glass-glass PV modules to ensure that the crops were exposed to uniform solar radiation. Image: Fraunhofer ISE

“The results from the first harvest were, for the most part, promising,” noted Prof. Petera Högy, agricultural expert at the University of Hohenheim. “The crop yield of clover grass under the PV array was only 5.3 percent less than the reference plot. The yield losses for potatoes, wheat and celeriac are between 18 to 19 percent and therefore somewhat higher.”

Importantly, the crops were of commercial form and could be harvested as normal. 

The power production from the 194 kilowatts PV system was said to have matched well to the daily farm load, with 40% of the electricity produced on the farm used to charge the electric vehicles and process the harvested crops at the farm.

Fraunhofer ISE said that in the summer months, the load demand at the farm was almost completely met by the PV system. The surplus PV electricity has been fed into the Elektrizitätswerke Schönau, an electric utility company based on 100% renewable energy and a partner in the project. The research also suggests that optimising energy consumption at the farm further would raise self-consumption to around 70% of electricity generation. 

Fraunhofer ISE also noted that the 720 bifacial solar modules produced 1266 kilowatt-hours of electricity per installed kilowatt, one third more than the average value of 950 kWh/kW in Germany.

Fraunhofer ISE also noted that the 720 bifacial solar modules produced 1266 kilowatt-hours of electricity per installed kilowatt, one third more than the average value of 950 kWh/kW in Germany. Image: Fraunhofer ISE

Prof. Hans-Martin Henning, Institute Director of Fraunhofer ISE said, “Agrophotovoltaics (APV) has the potential to open up new space that is urgently needed for the PV expansion in Germany. At the same time APV can mitigate the conflicting interests between agriculture and open space PV systems for viable land. Before market readiness, however, other sectors and differently sized systems still must be tested. Also, the technical integration must be further advanced, for example, the implementation of storage.”

APV can mitigate the conflicting interests between agriculture and open space PV systems for viable land. Image: Fraunhofer ISE

However, further investigations and testing is required before APV is commercially ready in Germany. 

“In order to provide the necessary proof-of-concept before market entry, we need to compare further techno-economical applications of APV, demonstrate the transferability to other regional areas and also realize larger systems,” added Stephan Schindele, project manager of agrophotovoltaics at Fraunhofer ISE. “For example, different possible applications shall be explored in combination with fruit, berries, hops and wine crops and with the various technologies such as energy storage, special films with organic solar cells and solar PV water treatment systems. Besides investment from industry and research policy, appropriate political measures supporting the technology are of vital importance for a successful market entry.” 

APV systems have been deployed in China for several years and have been deployed under the ‘Top Runner’ and ‘Poverty Alleviation’ programs for dual use and high-efficiency modules such as bifacial. 

Read Next

Premium
June 9, 2025
N-type polysilicon prices have dropped to RMB34,000/ton as the project installation rush ends, putting cost pressure on the industrial chain.
June 9, 2025
Saatvik Solar, a unit of Saatvik Green Energy Limited (SGEL), is building a 4.8GW solar cell and 4GW module manufacturing facility in Ganjam district of Odisha.
June 9, 2025
Growing political headwinds threaten to dent US solar manufacturing and project deployment, despite a strong start to 2025.
June 6, 2025
Eternal Sun has acquired German solar simulator provider Wavelabs, which has resulted in the formation of a new subsidy, Wavelabs Eternal Sun.
Premium
June 6, 2025
Europe must secure the 'strategic segments' of the solar supply chain, according to experts at a PV Tech panel at this year's Intersolar event.
June 5, 2025
Solar manufacturer Involt Energy has broken ground on its first solar cell manufacturing plant in the western Indian state of Gujarat, with an initial annual nameplate capacity of 1.78GW. 

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico