JinkoSolar’s ‘Eagle+’ modules verified at 306.9 Watts

December 5, 2014
Facebook
Twitter
LinkedIn
Reddit
Email

Major PV manufacturer JinkoSolar said that its 60-cell multicrystalline silicon ‘Eagle+’ series modules have achieved power output of 306.9 Watts.

The company said independent tests were recently conducted by TUV Rheinland's Shanghai Testing Center on a sample of the Eagle+ modules under Standard Testing Conditions (STC). 

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Kangping Chen, CEO of JinkoSolar said: “Our R&D team continues innovating new technology that has now delivered exciting results. Those innovations significantly improve the power output and reliability of our modules to ensure 25-year stable power generation, and we aim to put them into mass production soon.”

JinkoSolar noted that the module incorporated several technology advancements related to cell design and materials, which include DuPont’s ‘Solamet’ metallization pastes, as well as advanced integrated packing technology, and employing DuPont’s ‘Tedlar’ polyvinyl fluoride film–based back sheets. 

JinkoSolar is known to be adopting PERC (Passivated Emitter Rear Cell) cell technology to upgrade existing solar cell lines and recently announced capacity expansions. 

The company also highlighted that it had also reduced crystalline silicon defects and that the modules could resist potential induced degradation (PID) under weather conditions of 85 degrees Celsius and 85% relative humidity for 1,000 hours. 

Described as an ‘antioxidant’ design of the cell and the use of Tedlar encapsulation material helped to eliminate the possibility of snail trails. 

Snail trails are dark lines that can appear to crisscross the surface of the cells. DuPont amongst others have investigated the issue and believe it is caused by a reaction between additives found in some EVA encapsulant material combinations and the silver cell fingers. EVA degradation, caused by acid generation from the material is believed to be a catalyst for accelerating the snail trail defect. 

Solar cells with micro cracks are also believed to be the catalyst for snail trail formation. 

JinkoSolar announced the introduction of the ‘Eagle+’ modules at SNEC in May, 2014 with 275-Watts of peak power output. 

Read Next

February 20, 2026
NTPC has commissioned 165MW of solar capacity at its 1.25GW Khavda-II solar project in Gujarat.
February 20, 2026
Microsoft met all of its electricity demand with renewables in 2025 and has said it will continue to do so through 2030.  
Premium
February 20, 2026
In the last two weeks, both Shoals and Voltage have declared victory in an eBOS patent infringement case, following a ruling from the US ITC.
February 20, 2026
Origis Energy has commissioned three 145MW Swift Air solar facilities in Ector County, Texas, to supply power to Occidental’s operations in West Texas. 
February 19, 2026
SolarPower Europe has released two new technical due diligence reports for utility-scale hybrid solar PV and battery energy storage system (BESS) projects.
February 19, 2026
Statkraft and 3E analysed 64 utility-scale PV plants, representing 2.1GWp DC capacity, with datasets spanning six months to five years.

Upcoming Events

Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA
Solar Media Events
November 3, 2026
Málaga, Spain