MacDermid’s HELIOS plating solution replaces silver paste with narrow copper grid conductors

Facebook
Twitter
LinkedIn
Reddit
Email

MacDermid’s HELIOS nickel, copper, and silver wet chemical plating baths, which are a key part of an integrated laser patterning, plating, and thermal anneal system, produces 30µm fingers and 4N pull strengths, while reducing costs by US$0.06/cell.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

As the cost of producing silicon solar cells has decreased by US$3/Wp since 2008, the demand for PV has grown 40% CAGR, putting pressure on whether conventional screen-printed silver paste can continue to serve the industry’s future needs. In addition, printing and sintering silver limits the ability to implement thinner wafers and more efficient cell designs, due to physical and thermal stresses.  To address these challenges, PV roadmaps call for copper grid conductors.  Until now, copper conductors suffered adhesion loss, plated on the ARC, and required huge, expensive plating equipment.   

Solution

Narrow copper conductors, allowing 50% more light capture, are formed in a 3 step process.  A pico second UV laser ablates the ARC, exposing the silicon.  An inline, conveyorized plating tool deposits 1µm of nickel, 10-15µm of copper, and 0.2µm of silver, using ultra-fast electrodeposition based on innovative formulae. The HELIOS metal grid is quickly annealed, achieving adhesion similar to paste printed conductors.  The nickel achieves a full-area contact to silicon, and the copper reaches conductivity unachievable with paste. Low temperature processing enables all high efficiency cell types, especially PERC, silicon heterojunction, and bi-facial designs.  Conductor material costs are immediately reduced 50%, providing a 1 year return on investment.  To assure reliability, HELIOS conductors were used on production-scale modules tested at Fraunhofer ISE to IEC specifications.  The modules exceeded damp heat and thermal cycle stresses, with no failure after 600 thermal stress cycles.

Applications

Mono and multicrystalline silicon cell conductor formation.

Platform

Specialized laser patterning is available from our partner in Germany, scaleable to 50 or 100MW installations, with built-in transport.  Conductors are plated using MacDermid’s new HELIOS chemical systems, at extremely high deposition rates, very high purity, and virtually zero plated stress.  Most cells will benefit from horizontal, LIP plating tools with single-sided chemical exposure, and unique brush contact, at 20m length for 100MW.  Some designs will require vertical continuous plating to achieve fast, double-sided deposition.

Availability

Currently available

Read Next

December 5, 2024
Nir served as the company’s chief marketing executive since June 2024 and will succeed Ronen Faier, who served as interim CEO of the company since August 2024.
December 5, 2024
The European Commission has launched a €3.4 billion call to support the development of “innovative decarbonisation technologies in Europe".
December 5, 2024
TotalEnergies has sold a 50% stake in a 2GW US solar and energy storage portfolio and acquired German renewable energy developer VSB Group.
Premium
December 5, 2024
Magdalena Hilgner of PLAY explains that projects that deliver power reliably and at a fair price will always be attractive for offtakers.
December 5, 2024
Australian energy company APA Group has completed the construction of a 45MW solar-plus-storage project in the Pilbara region of Western Australia.
December 4, 2024
Solar will form the cornerstone of Indonesia’s renewable power sector, according to forecasts made by think tank Ember Climate.

Subscribe to Newsletter

Upcoming Events

Solar Media Events, Upcoming Webinars
December 12, 2024
9am GMT / 10am CET
Solar Media Events
February 4, 2025
London, UK
Solar Media Events
February 17, 2025
London, UK
Solar Media Events
February 26, 2025
Seattle, USA