Manz Automation and Basler team on fully automated cell tester

August 8, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

Collaboration between Manz Automation AG and Basler AG has led to Manz claiming that it has developed the fastest cell testers for crystalline silicon solar cells at more than 2,400 solar cells per hour. In an exclusive deal Manz has integrated Basler’s electroluminescence measurement technology into its testing platform, which is fully automated.

“Integrating this solution allows microscopic cracks in solar cells to be reliably detected, thus reducing breakage rates,” commented Volker Biemann, Basler AG’s Product Manager for solar inspection solutions. “Experiments to date have shown that in addition to the microscopic cracks, which are relevant for breakages, other defects can also by easily recognized with the help of the images.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

“Increasing the performance of our backend lines means we are taking another step towards grid parity,” said Dieter Manz, Manz Automation’s CEO. “This will help us to enable our customers to cut costs and to boost the efficiency of solar modules. This cooperation is another building block to set standards as well in future with our equipment, allowing us to offer the world’s leading high-tech machines in the photovoltaic sector. The Manz cell tester is now not only the fastest machine on the market, but also the machine with the most comprehensive testing technology.”

Basler said that it had been able to optimize the measurement process so that it can be used for the inline production of crystalline silicon solar cells. This method applies an electrical current to the solar cell. As a result of the thereby generated current, the solar cell emits a weak luminescence. This ‘light’ can be recorded and evaluated by using ultra-sensitive optical measuring systems.

Read Next

December 10, 2025
The US SEIA has named board chair Darren Van’t Hof as interim president and CEO, to begin work 20 January 2026.
December 10, 2025
Italy's NZIA FER-X auction aims to diversify Europe's supply chain, but this brings its own challenges, writes Patrizio Donati.
December 10, 2025
The global utility-scale solar PV sector has exceeded the threshold of 1TW of operating capacity, according to Wiki-Solar.
December 10, 2025
Plentiude, the renewable energy development arm of Italian oil and gas major Eni, has started operations at a 150MW solar PV plant in Spain.
December 10, 2025
The US solar industry registered its third-best quarter with 11.7GW of new capacity installed in the third quarter of 2025.
December 10, 2025
The average price of several types of solar PV modules remained stable in Europe in November, according to sun.store.

Upcoming Events

Upcoming Webinars
December 17, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA