Manz Automation and Basler team on fully automated cell tester

August 8, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

Collaboration between Manz Automation AG and Basler AG has led to Manz claiming that it has developed the fastest cell testers for crystalline silicon solar cells at more than 2,400 solar cells per hour. In an exclusive deal Manz has integrated Basler’s electroluminescence measurement technology into its testing platform, which is fully automated.

“Integrating this solution allows microscopic cracks in solar cells to be reliably detected, thus reducing breakage rates,” commented Volker Biemann, Basler AG’s Product Manager for solar inspection solutions. “Experiments to date have shown that in addition to the microscopic cracks, which are relevant for breakages, other defects can also by easily recognized with the help of the images.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

“Increasing the performance of our backend lines means we are taking another step towards grid parity,” said Dieter Manz, Manz Automation’s CEO. “This will help us to enable our customers to cut costs and to boost the efficiency of solar modules. This cooperation is another building block to set standards as well in future with our equipment, allowing us to offer the world’s leading high-tech machines in the photovoltaic sector. The Manz cell tester is now not only the fastest machine on the market, but also the machine with the most comprehensive testing technology.”

Basler said that it had been able to optimize the measurement process so that it can be used for the inline production of crystalline silicon solar cells. This method applies an electrical current to the solar cell. As a result of the thereby generated current, the solar cell emits a weak luminescence. This ‘light’ can be recorded and evaluated by using ultra-sensitive optical measuring systems.

Read Next

February 18, 2026
Meralco PowerGen Corporation has completed initial grid synchronisation and energisation of the 3.5GW MTerra solar project, which includes a 4.5GWh battery energy storage system (BESS). 
February 18, 2026
Octopus Energy has announced an investment of 'nearly' US$1 billion into Californian clean energy, including a solar-plus-storage project.
Premium
February 18, 2026
Data collection and analysis in solar PV installations is increasingly sophisticated, particularly relating to grid interaction and weather forecasting.
February 18, 2026
Utility-scale solar and wind curtailment in Australia’s NEM reached a record high of over 7TWh in 2025, according to analyst Rystad Energy.
February 18, 2026
Testing and Certification company UL Solutions has launched a new cybersecurity certification programme for distributed energy resources (DER) and inverters.
February 18, 2026
'Advanced forecasting tools are already improving solar and demand predictions by over 30%,' writes Schneider Electric's Frédéric Godemel.

Upcoming Events

Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA
Solar Media Events
November 3, 2026
Málaga, Spain