Manz Automation and Basler team on fully automated cell tester

August 8, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

Collaboration between Manz Automation AG and Basler AG has led to Manz claiming that it has developed the fastest cell testers for crystalline silicon solar cells at more than 2,400 solar cells per hour. In an exclusive deal Manz has integrated Basler’s electroluminescence measurement technology into its testing platform, which is fully automated.

“Integrating this solution allows microscopic cracks in solar cells to be reliably detected, thus reducing breakage rates,” commented Volker Biemann, Basler AG’s Product Manager for solar inspection solutions. “Experiments to date have shown that in addition to the microscopic cracks, which are relevant for breakages, other defects can also by easily recognized with the help of the images.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

“Increasing the performance of our backend lines means we are taking another step towards grid parity,” said Dieter Manz, Manz Automation’s CEO. “This will help us to enable our customers to cut costs and to boost the efficiency of solar modules. This cooperation is another building block to set standards as well in future with our equipment, allowing us to offer the world’s leading high-tech machines in the photovoltaic sector. The Manz cell tester is now not only the fastest machine on the market, but also the machine with the most comprehensive testing technology.”

Basler said that it had been able to optimize the measurement process so that it can be used for the inline production of crystalline silicon solar cells. This method applies an electrical current to the solar cell. As a result of the thereby generated current, the solar cell emits a weak luminescence. This ‘light’ can be recorded and evaluated by using ultra-sensitive optical measuring systems.

Read Next

Premium
November 27, 2025
Prateek Tare tells PV Tech Premium how Distributed Energy Infrastructure transformed a Superfund site into the Acton PV-plus-storage project.
November 27, 2025
The World Bank will invest in a huge 4GW, 5.12GWh solar-plus-storage complex in Malaysia, which will form part of a pan-Southeast Asian power grid initiative.
November 27, 2025
Transelectrica has published new rules for the Romanian grid, setting out time frames for auctions involving new energy generation projects.
November 27, 2025
The Solar Stewardship Initiative (SSI) and the Copper Mark have signed an agreement to pursue “responsible production and sourcing of copper across the solar energy value chain”.
November 27, 2025
RWE Clean Energy has commissioned the 200MW Stoneridge Solar PV project in Texas, which is co-located with a 100MW/200MWh BESS.
November 27, 2025
A group of California legislators has called on the state Public Utilities Commission to hold two utilities accountable for delays in connecting solar PV and energy storage capacity to the grid.

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA