Manz Automation’s OneStep selective emitter system boosts cell efficiencies 0.5%

September 6, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: Manz Automation has developed the OneStep selective emitter (SE) system for crystalline silicon solar cells. Among competing SE processes, the laser process consists of only one single process step, without any consumable usage. Investment payback is said to be less than one year, while the small footprint allows easy retrofit of existing production lines. The tool is claimed to enable cell efficiency gains of up to 0.5%. 

Problem: One of the most prominent goals in the production of crystalline silicon solar cells is the reduction of the specific production cost per watt. One means of raising efficiencies is the incorporation of a selective emitter cell structure into industrial solar cell production, as it can increase solar cell efficiency due to enhanced blue light response, leading to higher short circuit current Jsc, and a reduced emitter saturation current density Joe, boosting the open circuit voltage Voc.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: The OneStep system features one single additional process step, when compared with standard crystalline silicon solar cell production. This step is introduced between emitter diffusion and phosphorous glass (PSG) etch. Pulsed laser irradiation locally scans the wafer surface, forming highly-doped areas by local liquid-state diffusion of phosphorous from the PSG layer. After anti-reflection coating, the metallization grid is deposited on top of the highly doped areas. The local doping leads to a reduction of the specific contact resistance from silicon to metal, thus allowing for the use of lowly doped emitters with high sheet resistance.

Applications: c-Si production applying n-type emitters and front-side metallization as well as existing lines (retrofit).

Platform: Throughput: 1200 or 2400 wafers per hour (configurable); accuracy: ±10µm.

Footprint (including automation): 4.7 x 2.7m2. Fully automated and compatible with all established carriers. Efficiency gain up to 0.5% absolute.

Availability: Currently available.

Read Next

February 3, 2026
The US and India have announced a trade deal under which Washington will cut reciprocal tariffs on Indian goods to 18% from 25%.
February 3, 2026
Resilience against supply chain risks in Europe comes in the form of early action, a panel at Solar Finance and Investment Europe agreed.
February 3, 2026
Integrating more private investment into Europe’s grid infrastructure will be a necessity if the continent's bottlenecks are to be overcome.
Premium
February 3, 2026
PV Talk: Vote Solar’s Sachu Constantine discusses the growing role of state and local governments in driving forward clean energy policy in the United States.
February 3, 2026
There has been a 'clear cooling' of appetite for new renewable energy investments in the US, according to speakers at SFIEU 2026.
February 2, 2026
Independent power producer (IPP) TerraForm Power has acquired a 1.56GW solar project in Lee County, Illinois from Hexagon Energy.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA