Manz Automation’s OneStep selective emitter system boosts cell efficiencies 0.5%

September 6, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: Manz Automation has developed the OneStep selective emitter (SE) system for crystalline silicon solar cells. Among competing SE processes, the laser process consists of only one single process step, without any consumable usage. Investment payback is said to be less than one year, while the small footprint allows easy retrofit of existing production lines. The tool is claimed to enable cell efficiency gains of up to 0.5%. 

Problem: One of the most prominent goals in the production of crystalline silicon solar cells is the reduction of the specific production cost per watt. One means of raising efficiencies is the incorporation of a selective emitter cell structure into industrial solar cell production, as it can increase solar cell efficiency due to enhanced blue light response, leading to higher short circuit current Jsc, and a reduced emitter saturation current density Joe, boosting the open circuit voltage Voc.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: The OneStep system features one single additional process step, when compared with standard crystalline silicon solar cell production. This step is introduced between emitter diffusion and phosphorous glass (PSG) etch. Pulsed laser irradiation locally scans the wafer surface, forming highly-doped areas by local liquid-state diffusion of phosphorous from the PSG layer. After anti-reflection coating, the metallization grid is deposited on top of the highly doped areas. The local doping leads to a reduction of the specific contact resistance from silicon to metal, thus allowing for the use of lowly doped emitters with high sheet resistance.

Applications: c-Si production applying n-type emitters and front-side metallization as well as existing lines (retrofit).

Platform: Throughput: 1200 or 2400 wafers per hour (configurable); accuracy: ±10µm.

Footprint (including automation): 4.7 x 2.7m2. Fully automated and compatible with all established carriers. Efficiency gain up to 0.5% absolute.

Availability: Currently available.

Read Next

November 26, 2025
Module shipment and pricing patterns in Europe bear resemblance to last year’s oversupply, which resulted in substantial losses for many industry players, writes Filip Kierzkowski
November 26, 2025
RES is to provide O&M services for 300MW of Matrix Renewables solar PV projects, while Axpo has completed a 200MW solar facility in León.
November 26, 2025
Indian solar PV manufacturer Vikram Solar has started commercial operations at its 5GW Vallam module manufacturing facility in India.
November 26, 2025
Chinese manufacturers account for nine of the world’s top ten polysilicon producers, led by Tongwei, GCL Technology and Daqo New Energy.
November 26, 2025
India has added 11GW of solar PV capacity during the third quarter of 2025, according to a report from the Institute for Energy Economics and Financial Analysis (IEEFA).
November 26, 2025
The Philippines has awarded Acciona Energía a 20-year power supply contract for a 180MW solar PV project on the island of Cebu.

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA