Manz Automation’s OneStep selective emitter system boosts cell efficiencies 0.5%

September 6, 2010
Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: Manz Automation has developed the OneStep selective emitter (SE) system for crystalline silicon solar cells. Among competing SE processes, the laser process consists of only one single process step, without any consumable usage. Investment payback is said to be less than one year, while the small footprint allows easy retrofit of existing production lines. The tool is claimed to enable cell efficiency gains of up to 0.5%. 

Problem: One of the most prominent goals in the production of crystalline silicon solar cells is the reduction of the specific production cost per watt. One means of raising efficiencies is the incorporation of a selective emitter cell structure into industrial solar cell production, as it can increase solar cell efficiency due to enhanced blue light response, leading to higher short circuit current Jsc, and a reduced emitter saturation current density Joe, boosting the open circuit voltage Voc.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: The OneStep system features one single additional process step, when compared with standard crystalline silicon solar cell production. This step is introduced between emitter diffusion and phosphorous glass (PSG) etch. Pulsed laser irradiation locally scans the wafer surface, forming highly-doped areas by local liquid-state diffusion of phosphorous from the PSG layer. After anti-reflection coating, the metallization grid is deposited on top of the highly doped areas. The local doping leads to a reduction of the specific contact resistance from silicon to metal, thus allowing for the use of lowly doped emitters with high sheet resistance.

Applications: c-Si production applying n-type emitters and front-side metallization as well as existing lines (retrofit).

Platform: Throughput: 1200 or 2400 wafers per hour (configurable); accuracy: ±10µm.

Footprint (including automation): 4.7 x 2.7m2. Fully automated and compatible with all established carriers. Efficiency gain up to 0.5% absolute.

Availability: Currently available.

Read Next

November 19, 2025
Econergy Renewable Energy has successfully connected its 52MW Resko solar project in Poland to the national electricity grid.
November 19, 2025
The US Department of Energy (DOE) will need to invest US$25 billion by 2030 to maintain its position as a leader in the global energy sector.
November 19, 2025
PVV Infra has outlined plans to build a 1GW TOPCon solar cell production line in the Indian state of Andhra Pradesh.
November 19, 2025
The world invested US$554 billion into solar PV projects in 2024, leading renewable electricity generation sources, according to IRENA.
November 19, 2025
Recurrent Energy has sold its 275MWdc Gunning hybrid solar-plus-storage project in New South Wales, Australia.
November 18, 2025
TOPCon solar modules show signs of accelerated degradation, which undermines the long warranties promised by many manufacturers, according to new findings from German researchers.

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal
Solar Media Events
June 16, 2026
Napa, USA