MIT researchers reveal ‘paper-thin’ solar cells that can ‘turn any surface into a power source’

December 12, 2022
Facebook
Twitter
LinkedIn
Reddit
Email
The cells claim to be easily applied and very adaptable, with potential to be deployed with minimal installation procedure. They are yet to be produced at scale. Image: MIT.

Researchers at the Massachusetts Institute of Technology (MIT) have unveiled a new ‘paper-thin’ solar PV cell that can be applied to a variety of surfaces to generate highly integrable, versatile solar energy, they say.

Using nanomaterials in the form of printable electronic inks, the solar cell structure is coated using a slot-die coater, which deposits layers of the electronic materials onto a prepared, releasable substrate that is only 3 microns thick, and using screen printing (a technique similar to how designs are added to silkscreened T-shirts), an electrode is deposited on the structure to complete the solar module.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The researchers can then peel the printed module, which is about 15 microns in thickness, off the plastic substrate, forming an ultralight solar device.

The device can then be adhered to a lightweight material known commercially as Dyneema, weighing only 13g per square metre.

The cells are yet to be scaled up to industrial manufacturing levels, and would need to be encased in another protective material to prevent them from degrading once exposed to the environment. MIT said that the carbon-based organic material used in their fabrication could change through interaction with moisture and oxygen, thus damaging its performance.

The research claimed that the modules could generate 730W/kg under test conditions when freestanding, and around 370W/kg when deployed on the Dyneema fabric.

“Encasing these solar cells in heavy glass, as is standard with the traditional silicon solar cells, would minimise the value of the present advancement, so the team is currently developing ultrathin packaging solutions that would only fractionally increase the weight of the present ultralight devices,” said Mayuran Saravanapavanantham, one of the researchers.

The research said that the cells could be applied to tents and shelters deployed in emergency response zones, turned into wearable power fabrics, integrated into the sails of ships to provide power at sea or adhered to the wings of a drone to extend its flight duration.

Solutions to the apparently high levels of degradation, and the potential scalability of the cells, weren’t mentioned. The research is funded, in part, by Italian energy company Eni through the MIT Energy Initiative, the US National Science Foundation, and the Natural Sciences and Engineering Research Council of Canada.

16 June 2026
Napa, USA
PV Tech has been running PV ModuleTech Conferences since 2017. PV ModuleTech USA, on 16-17 June 2026, will be our fifth PV ModulelTech conference dedicated to the U.S. utility scale solar sector. The event will gather the key stakeholders from solar developers, solar asset owners and investors, PV manufacturing, policy-making and and all interested downstream channels and third-party entities. The goal is simple: to map out the PV module supply channels to the U.S. out to 2027 and beyond.
9 March 2027
Location To Be Confirmed
PV CellTech Global will gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. Join us in Q1 of 2027

Read Next

December 24, 2025
The PV Review, 2025: A look back over a turbulent year in US solar policy changes, from the 'Big, Beautiful Bill' to tariff challenges.
December 24, 2025
Alphabet has announced a definitive agreement to acquire data centre and energy infrastructure solutions provider Intersect for US$4.75 billion in cash. 
December 24, 2025
CPV Renewable Power and Harrison Street Asset Management (HSAM) have begun commercial operations at its 160MW solar project located in Garrett County, Maryland. 
December 24, 2025
PV Tech spoke to Marty Rogers of SolarEdge about how US policy rulings and policy uncertainty affected his company's work in 2025.
December 23, 2025
The PV Review, 2025: The culmination of years of oversupply of Chinese modules caused module prices to fall, slashing manufacturers’ profits.
December 23, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, has secured solar PV module orders worth INR4.8 billion (US$54.2 million).

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland