Control Techniques transformerless central inverter maximizes energy yield in low light

Facebook
Twitter
LinkedIn
Reddit
Email

Product Briefing Outline: Control Techniques has launched a ‘transformerless’ central inverter system for utility scale photovoltaic power plants that is designed to maximize investor returns  through optimized  availability, efficiency and yield. Control Techniques’ SPV is constructed using 145kWp, 176kWp and multiple 176kWp parallel connected inverter modules to produce any desired power rating up to 1760kWp and employs a second generation Maximum Power Point Tracking (MPPT) algorithm.  Over the last 2 years Control Techniques inverters have been  installed in over 80 large scale PV power plants with a combined power of 150MW.  Confirmed orders for over 330MW have been received.

Problem: Conventional central inverters efficiency levels can fall below 20% of rated power due to varying solar irradiation caused by the large fixed switching losses associated with bulk inverters. Limited capabilities to operate efficiently in medium and low light conditions, typical less temperate zones such as northern Europe, reduces the potential investment returns.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution: Control Techniques’ SPV inverter achieves Euro and CEC weighted efficiencies of 97.6%. However, the real gains are claimed in its flat load / efficiency curve and its ability to maximize energy yield in low to medium light conditions.  Regardless of power rating, SPV can turn on / off at a power threshold of only 900W effectively extending the length of the operational day. The energy yield of the SPV inverter is further enhanced by Control Techniques’ second generation Maximum Power Point Tracking (MPPT) algorithm.  The software is designed to track transient changes in irradiation whilst accurately determining the optimum condition across the operating temperature range of the PV plant. The MPPT range of the SPV is 400 to 800VDC, with the planned UL version operating from 300-600VDC. The benefit of increased yield under low light conditions may not be accurately reflected by the traditional efficiency weighting methodology, according to the company, and particularly in less temperate zones such as northern Europe, which could have major impact on investment returns.

Applications: All large scale PV applications, with either thin-film or crystalline photovoltaic modules. Inverter maximum turn-on voltage is 1000V DC.

Platform: Each inverter is constructed from one or more, easy to handle, compact modules that are mass produced. The active / standby sequence of the inverter modules rotates daily ensuring that all modules are exercised equally with the added benefit that individual modules accrue fewer operational hours per year than the alternative bulk inverter. The CT modular solution is claimed to offer longer service life. In the event of the loss of an inverter module the system automatically isolates the single module and continues to operate efficiently and with re-optimized capacity. Often there is no reduction in output if the prevailing meteorological conditions aren’t at the optimum.  The SPV can also be oversized if required, to provide redundancy for critical installations or additional reactive power capability without additional thermal losses.  The inverters are compliant with all key international grid connection standards offering both Mains Dip Ride Through and Anti Islanding capability.  The SPV generates around 3.5% ITHD; consequently, no special design or de-rating of the transformer is necessary. The inverters can be easily integrated with third-party SCADA using Ethernet, Modbus or other communication networks.

Availability: September 2010 onwards.

Read Next

Premium
October 10, 2025
Gaëtan Masson of IEA PVPS warns of overcapacity, collapsing prices and slipping module quality in the new Trends in PV Applications report.
October 10, 2025
The European solar module market has reached a “state of equilibrium” in recent weeks, with stable prices and regular demand.
October 10, 2025
US solar recycling firm OnePlanet has achieved the R2v3 certification from electronics sustainability non-profit SERI, which represents the “highest standards of traceability”.
October 10, 2025
NTPC Renewable Energy Limited has signed an MoU with the Government of Gujarat to develop 15GW renewable energy projects in Gujarat.
October 10, 2025
Australia's renewable energy sector recorded its slowest month of the year for additions in September, with 5.8GW of new projects added to development pipelines, according to data from Rystad Energy.
October 9, 2025
The Australian government has announced the results of the fourth Capacity Investment Scheme (CIS) tender, with 6.6GW of renewables awarded long-term contracts.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK