JA Solar to combat cell LID issues with Ga-doped p-type crystalline silicon wafers

October 14, 2019
Facebook
Twitter
LinkedIn
Reddit
Email

‘Solar Module Super League’ (SMSL) member, JA Solar has licensed a number of patents from Shin-Etsu Chemical on doping Ga in silicon crystals and using the Ga-doped p-type crystalline silicon wafers for making solar cells to mitigate the impact of Light Induced Degradation (LID).

JA Solar indicated that adopting Ga-doped wafer processes would both improve solar cell conversion efficiencies and LID mitigation for advanced solar cells in the future, providing more stable and better long-term energy generation.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Jin Baofang, JA Solar's Chairman of Board of Directors, commented that “using Ga-doped silicon wafers for solar cell application definitely results in better performance of solar cells and PV modules, as well as the improvement of their long-term reliability. Being the patent holder of several leading technologies including bifacial PERC technology in China and other countries, JA Solar has benefited from and always supports IP protection. We deeply appreciate Shin-Etsu Chemical granting JA Solar their IP rights of Ga-doped crystalline silicon technology, which is an important step for JA Solar in introducing advanced technology and supporting the industry's intellectual property protection. JA Solar will continue to develop and provide high-performance PV products and clean-energy solutions to our customers worldwide through technological innovation and continuous performance improvement.”

Typically, monocrystalline solar cells are fabricated on boron doped p-Type wafers but oxygen content can create defects that result in bulk lifetime degradation when the cells are first exposed to light.

There are several possible considerations in using Ga in the crystal growth phase and the need to use consistently high-purity polysilicon in the process. However, the ability to signifcantly reduce LID effects over the lifetime of modules and provide higher overall efficiencies could be the key benefit, especially with next-generation solar cells. 

Read Next

November 28, 2025
The European Patent Office (EPO) has revoked a patent for a key solar cell manufacturing process, which has been hailed as “good news” for European solar PV manufacturing.
November 27, 2025
The Solar Stewardship Initiative (SSI) and the Copper Mark have signed an agreement to pursue “responsible production and sourcing of copper across the solar energy value chain”.
November 26, 2025
Module shipment and pricing patterns in Europe bear resemblance to last year’s oversupply, which resulted in substantial losses for many industry players, writes Filip Kierzkowski
November 26, 2025
Chinese manufacturers account for nine of the world’s top ten polysilicon producers, led by Tongwei, GCL Technology and Daqo New Energy.
November 24, 2025
The Moroccan government has announced plans to build a 30,000MT “green polysilicon” production facility, in partnership with Moroccan renewable energy firm GPM Holding.
November 18, 2025
TOPCon solar modules show signs of accelerated degradation, which undermines the long warranties promised by many manufacturers, according to new findings from German researchers.

Upcoming Events

Solar Media Events
December 2, 2025
Málaga, Spain
Upcoming Webinars
December 4, 2025
2pm GMT / 3pm CET
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy