The demand for equipment used to manufacture solar photovoltaic solar cells and modules has grown at an explosive rate over the past five years, and the fastest-growing segment has been for systems used to manufacture thin-film cells and modules. In 2009, demand for this type of equipment reached US$1.9 billion, up from US$0.1 billion in 2004, representing an astonishing 80% compound annual growth rate over the period. However, as with the rest of the industry, 2009 saw sales flattened and the business model change from one of rapid growth to that of sustainability. The result of this transition has been some consolidation, with several major equipment vendors strengthening their position through acquisitions. The outlook for 2010 calls for sales of thin-film production equipment to recover and continue growing at a compound annual growth rate of around 15% over the next five years (see Fig. 1).
The emitter or p-n junction is the core of crystalline silicon solar cells. The vast majority of silicon cells are produced using a simple process of high temperature diffusion of dopants into the crystal lattice. This paper takes a closer look at the characteristics of this diffusion and possible variations in the process, and asks whether this step can lead to optimal emitters or whether emitters should be made with different processes in order to obtain the highest possible efficiency.
The eighth edition of Photovoltaics International was published in May 2010. In this issue Enerplan address how the new FiT will impact the French Market, in Materials IBM and NREL discuss the pros and cons of UMG silicon and DERlab puts single-phase inverters to the test in Power Generation.
Photovoltaic modules are designed to meet the reliability and safety requirements of national and international test standards. Qualification testing is a short-duration (typically, 60-90 days) accelerated testing protocol, and it may be considered as a minimum requirement to undertake reliability testing. The goal of qualification testing is to identify the initial short-term reliability issues in the field, while the qualification testing/certification is primarily driven by marketplace requirements. Safety testing, however, is a regulatory requirement where the modules are assessed for the prevention of electrical shock, fire hazards, and personal injury due to electrical, mechanical, and environmental stresses in the field. This paper examines recent reliability and safety studies conducted at TÜV Rheinland PTL’s solar module testing facility in Arizona.
This paper, the third in a series covering cost of ownership (COO) studies for photovoltaics [1], examines the need for metallization of silicon-based solar cells and how it has evolved over the past few years. The technologies and techniques that are being developed for this part of cell manufacturing in the foreseeable future are also discussed. The paper will conclude with a COO case study using the DEK Solar PV3000 as an example.
Building integrated PV | Despite plenty of hype, BIPV has remained a niche segment in the solar business, held back by a combination of high costs and low efficiencies. But as Ben Willis hears, the high-profile entry of Tesla on to the BIPV scene could herald the start of a new era for the sector.
In late October, with all the usual fanfare that accompanies an Elon Musk announcement, the CEO of EV and battery storage manufacturer, Tesla, took to the stage to lift the lid on a heavily trailed new product. Most of Musk’s recent utterances on energy have been about storage, particularly Tesla’s high-profile foray into the world of stationary storage through its Powerwall battery system. But this was something a bit different – a buildingintegrated PV (BIPV) product designed to emulate various kinds of roofing tile and eliminate the need for clunky conventional roof-mounted modules once and for all.
Heat transfer and control of the temperature field are important in the production of silicon solar cell wafers. Present work focuses on the first steps of the production chain, i.e. crystallization and wafering. For the crystallization process, control of heat transfer is crucial for the ingot quality in terms of grain structure, impurity distribution, particle formation, and ingot stresses. Heat transfer is also important during subsequent processes, in particular the wire sawing of the silicon blocks into wafers. The paper emphasises the role of heat transfer and explains the consequences for these processes. Examples from experimental trials and measurements are combined with models and simulation methods.
PV manufacturers can quickly reduce their costs, and increase their yields, by using SEMI standards that were originally designed to help semiconductor fabs deal with power glitches and power costs. SEMI, the global industry association serving the manufacturing supply chains for the microelectronic, display and photovoltaic industries, has two well-established electric power standards that could prove especially useful for PV manufacturing: SEMI F47, which helps equipment deal with power disturbances, and SEMI E3, which helps users understand how much electric power is used in their recipes. This paper provides a method of lowering costs and increasing yield by applying these standards in the PV manufacturing industry.
Chemical stoichiometry along with depth profiling and metallic contamination is of considerable interest for photovoltaic thin films. Conversion efficiency can be affected for example if primary components, e.g. Cd and Te, are not present at proper ratios. Moreover, amorphous silicon can vary substantially between sources and deposition technique, and qualitative comparison of trace metallic contaminants may not be sufficient to ensure final thin-film quality. This discussion presents data from atomic emission and mass spectrometry techniques that quantitatively and accurately describe both bulk and trace elemental compositions in photovoltaic materials, various thin-film matrices, and the final thin-film cell and module.
This paper, the second in a series covering cost of ownership studies for photovoltaics [1], examines the need for saw damage removal and the follow-on processes of precleaning, texturization, and cleaning. The process considerations for wet and plasma approaches are further discussed before taking a detailed look at texturization using random pyramid formation. The paper will conclude with a view of current and future wet process techniques and a cost of ownership case study using Akrion Systems’ GAMA-Solar as an example.