A new wafer technology, named CDS (Crystallization on Dipped Substrate), is under development and has been found to be effective in the reduction of wafer cost and silicon feedstock. CDS technology was applied to 156mm x 156mm-sized wafers, obtained via the throughput of 1825cm2/min, and the resulting cell efficiency of 14.8% was confirmed. This paper outlines the principle behind the technology and outlines the procedure.
A vast majority of silicon solar cells are manufactured using silver paste that is screen printed onto the front side of the wafer and fired to form the front-side contact. Though this method is well established within the industry, it continues to present several areas for potential efficiency improvements. The Fraunhofer Institute [1] has, among others, studied the potential of using electrodeposition of silver on top of the front side silver paste as a way to improve the front-side contact and increase cell efficiency. These results have shown cell efficiency increases of up to 0.4% absolute. This type of improvement has captured the interest of many manufacturers, but there has been a hesitancy to adopt electrodeposition as there is uncertainty as to what they can expect on their cells. Since efficiency gains are dependent upon many factors that can be unique to an individual cell, this paper provides a much-needed exploration of the potential effects of electrodeposition of silver in a way that isolates its effects from that of other factors.
Crystalline wafer and thin-film photovoltaics manufacturing have experienced dramatic expansion in recent years, but future growth requires increasingly effective strategies to reduce costs and increase the competitiveness of PV power. Reducing PV manufacturing costs has been a prime focus of the industry. In the current climate, cost reduction is especially critical given the industry shakeout that many analysts are forecasting. Now more than ever, it is important to bring manufacturing capacity online quickly and cost effectively. The vast majority of commercial-scale PV manufacturing capacity is new construction (greenfield), meaning it is purpose-built on an unused piece of land; however, there are alternatives. This paper will outline opportunities for re-use of existing obsolete semiconductor fabs, and the steps required to convert from one manufacturing strand to another.
Today’s PV industry is growing at a rapid rate, but the industry would grow even faster if costs could be reduced for both the final products and the capital investment required for scale-up. One strategy for reducing module cost is to reduce the amount of semiconductor material needed (the cost of the silicon solar cells typically comprises more than half of the module cost). Many companies are thinning the silicon wafers to reduce costs incrementally; others use thin-film coatings on low-cost substrates (such as amorphous/microcrystalline silicon, cadmium telluride, or copper indium gallium (di)selenide on glass or other substrates). Concentrating photovoltaics (CPV) follows a complementary approach and uses concentrating optics, which may be designed for low or high concentration, to focus the light onto small cells. Low-concentration concepts use silicon or other low-cost cells; high-concentration optics may use more expensive, higher-efficiency cells. The higher-efficiency cells can reduce the cost-per-watt if the cost of the small cells is minimal.
Solar enterprises will each be faced with the occasional surplus or lack of solar modules in their lifetimes. In these instances, it is useful to adjust these stock levels at short notice, thus creating a spot market. Spot markets serve the short-term trade of different products, where the seller is able to permanently or temporarily off-set surplus, while buyers are able to access attractive offers on surplus stocks and supplement existing supply arrangements as a last resort.
Standardized requirements for the quality of PV modules, solar cells and wafers are given in the according IEC norms (e.g., IEC 61215, 61646, and IEC 61730 for modules). However, the manufacturers of cells purchasing wafers and the module manufacturers purchasing cells want information beyond the final check of the product and to monitor each step during the production process to identify harsh handling and/or machine faults at the earliest stage possible. With consequential improvements of the process enabled, continuous improvements in throughput and yield improvement of the factory are likely, also allowing an early feedback on quality issues to the raw material supplier. Furthermore, by knowing all characteristics and factors of the cell and the module, prediction of electrical energy yield during the life cycle of a PV power plant is becoming more accurate and more reliable.
The importance of rapid and accurate measurement of the electrical power output and related characteristics of photovoltaic (PV) modules or panels concluding the manufacturing process cannot be overemphasized. Even though these modules will likely be deployed under a variety of outdoor solar illumination conditions, they must be tested under a set of standard conditions to assure consistency of results demanded by both the manufacturer and the customer. The ability to provide a measurement tool for this critical manufacturing step that possesses the proper specifications and qualities, ranging from spectral accuracy to ease-of-use, is imperative.
The first edition of the Photovoltaics International journal, published in August 2008, was created in response to what was deemed to be a growing need for an unbiased technical publication for the solar cell and module manufacturing industry. With this in mind, the first edition of Photovoltaics International saw the commissioning of papers from a wide range of sectors, such as NREL’s overview of the CPV sector, IMEC’s thin-film efficiency gains via plasma texturing, site selection with IBM PLI, Q-Cells on silicon nitride thin films and Navigant Consulting’s market overview.
Increasing the efficiency and yield of production line processes forms an integral part of PV manufacturers’ technology roadmaps. For their next generation production lines, non-contact processing equipment is considered essential. This prioritizes laser-based processing, already established at several steps in c-Si and Thin-Film cell manufacturing. This paper summarizes the key issues when using lasers within PV production lines.
Design and performance qualification testing of PV modules consists of a set of well-defined accelerated stress tests with strict pass/fail criteria. ASU-PTL is an ISO 17025-accredited testing laboratory and has been providing photovoltaic testing services since 1992. This paper presents a failure analysis on the design qualification testing of both crystalline silicon (c-Si) and thin-film technologies for two consecutive periods: 1997-2005 and 2005-2007. In the first period, the industry was growing at a slower rate with traditional manufacturers, with qualification testing of c-Si technologies being primarily conducted per Edition 1 of the IEC 61215 standard. In the second period, the industry was growing at an explosive rate with new manufacturers joining the traditional manufacturers, while qualification testing of c-Si was primarily conducted per Edition 2 of IEC 61215. Similar failure analysis according to IEC 61646 has also been carried out for thin-film technologies. The failure analysis of the test results presented in this paper indicates a large increase in the failure rates for both c-Si and thin-film technologies during the period of 2005-2007.