Fraunhofer ISE provides cell-to-module power analysis modelling for bifacial solar cells

May 5, 2020
Facebook
Twitter
LinkedIn
Reddit
Email
Users can now investigate the effect of a second photoactive side of the solar cell within the module stack. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems has implemented new analytic models into the software SmartCalc.CTM which simulates the losses and gains in power output due to cell-to-module (CTM) integration.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The new analytical models are required for bifacial solar cells and modules which provide greater accuracy with real world data acquired in the field. New modelling functions are needed for the evaluation of a wider range of module types, interconnection and cell technologies in more diverse operating situations and thus represent an important step for further optimisation. 

Solution

Significantly extended features now include the analysis of solar modules with bifacial solar cells and the freedom to define arbitrary operation conditions. SmartCalc.CTM now supports module optimisation beyond laboratory conditions for an even greater variety of technologies.

The new analytical models not only allow bifacial solar cells but also include a more detailed analysis of backsheets and their impact on module power. Selection of the irradiance spectrum, the angle of incidence distribution as well as the intensity of the incident light now allows the evaluation of PV module behavior at non-Standard Testing Conditions (STC).

The determination of operation temperatures within solar modules plays a vital role in evaluating new module concepts. A novel thermal model has been implemented allowing the calculation of the module temperatures depending on operation conditions and module setup. The power output of half-cell, shingle or glass-glass-modules deviates from conventional modules at most operating conditions. Some module concepts may have a disadvantage at STC, yet under realistic environmental conditions may improve or even outperform.

The new SmartCalc.CTM version can consider thermal effects in the module efficiency analysis. With this feature, the impact of thermal material properties and module design on module power output can be evaluated at various environmental conditions. Also, the electrical models have been extended to cater to the increase in flexibility in operation conditions of the solar cell and cell interconnections. Low light, high temperature and new interconnection concepts are now modelled more accurately. This makes it possible to evaluate both cell and module losses directly in terms of peak power loss.

Applications

Bifacial solar cell CTM. 

Platform

The new release includes bifaciality and arbitrary operation conditions. Users can now investigate the effect of a second photoactive side of the solar cell within the module stack. Unchanged remain flexibility and user friendliness: The module setup can be loaded from database files or edited directly in a graphical user interface.

Availability

Currently available.

Screen shot of a power waterfall diagram from the software package SmartCalc.CTM of Fraunhofer ISE, where the efficiency gains and losses of a bifacial glass-glass module due to optical and electrical effects are displayed. The module is operated at 800 W/m² front irradiance and 250 W/m² rear irradiance and 25 °C. Image: Fraunhofer ISE
13 October 2026
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 13-14 October 2026 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023, 2024 and 2025 were a sell out success and 2026 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

Premium
February 13, 2026
PV Talk: Charith Konda, energy specialist at IEEFA, says India’s 2026-27 budget aims to “establish a stronger supply chain within the solar and PV cell and module sector,” but warns that “execution is as important as the policy itself.”
February 13, 2026
The US Treasury’s interim Foreign Entity of Concern (FEOC) guidance is “in line with expectations” according to a US renewable energy supply analyst.
February 10, 2026
Boviet Solar has affirmed its commitment to US solar PV manufacturing despite plans by its parent company to divest its ownership.
February 9, 2026
The US federal government has withdrawn its appeal against a US Court of International Trade (CIT) ruling to retroactively collect two years of tariffs on imported solar panels.
February 9, 2026
Solar manufacturer United Solar has launched a polysilicon manufacturing facility in Oman, adding 100,000 metric tons of annual production capacity.
February 6, 2026
Chinese solar PV manufacturer Aiko Solar will license a raft of solar cell technology patents from Singapore-based manufacturer Maxeon.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA