SNEC 2015: centrotherm’s regeneration belt furnace reduces LID impact by up to 80%

April 24, 2015
Facebook
Twitter
LinkedIn
Reddit
Email

centrotherm is launching the ‘c.REG’ conveyor belt furnace for monocrystalline p-type solar cell regeneration, which is claimed to achieve a reduction in light induced degradation (LID) from 6% to 1%, within less than a one minute processing cycle time. The company is showcasing the regeneration technology at SNEC 2015, being held in Shanghai, China.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

After being exposed to light monocrystalline silicon solar cells suffer performance losses due to light induced degradation (LID). In general, this effect, which is ascribed to boron-oxygen (B-O) complex in the wafer bulk, lowers conversion efficiency by up to 6 % in the long term.

Solution

To avoid B-O-defects, centrotherm developed a regeneration process and the corresponding key equipment c.REG that potentially reduces LID to 1% only. Within the regeneration process boron-oxygen defects responsible for light induced degradation (LID) are passivated and transformed into a less active state in order to minimize performance losses. The regeneration process can be implemented directly after fast firing, after sorting or even before module manufacturing and is applicable to both, Al-BSF (Aluminium Back Side Field) and PERC solar cells. Process time ranges between 20 and 45 seconds depending on wafer material and pre-processing.

Applications

Regeneration of Cz-Si solar cells.

Platform

c.REG is a stand-alone regeneration equipment based on the modular design of centrotherm conveyor belt furnaces with a small footprint. The process chamber is designed in a modular concept matching different requirements of wafer material with up to 3 modules possible that is notable for an optimum process sequence, time and calibration. The system comes with integrated heater and belt transfer handling and has a throughput (at 5100 mm/min) of 3600 wafers/hr.

Availability

May 2015 onwards

Read Next

November 10, 2025
Pine Gate Renewables has filed for Chapter 11 bankruptcy to pursue a court-supervised sale of its solar and energy storage portfolio, along with its independent power producer (IPP) platform.  
November 10, 2025
EDF Renewables, in partnership with SPIC HHDC and SAPCO, has secured financing for the 400MW solar PV projects in Saudi Arabia.
November 10, 2025
Indian independent power producer (IPP) ReNew Power has secured US$331 million from the Asian Development Bank (ADB) for its solar plant in the Southern state of Andhra Pradesh. 
November 10, 2025
The Australian Renewable Energy Agency (ARENA) will invest up to AU$45 million (US$29 million) in Fortescue's Solar Innovation Hub in the Pilbara region of Western Australia.
November 10, 2025
EnergyCo has shortlisted three consortia to build and operate the transmission network for the New England Renewable Energy Zone (REZ).

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal