Solar irradiance map shows East Coast USA PV projects ‘underperformed’ last year

Facebook
Twitter
LinkedIn
Reddit
Email

Extreme weather patterns could be behind a disparity in power generation from the East and West Coasts of the US, with the east underperforming expectations last year, according to a new report.

Forecasting firm Vaisala has said that in 2014, the East Coast saw levels of solar irradiance that were 5% lower than expected, while the other side of the country enjoyed levels 10% higher than forecasted.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

While it is widely expected that the west will annually enjoy more sunshine than the east of the US, both seaboards are important PV hubs, boasting the country's highest concentration of PV projects. Vaisala today issued its ‘2014 Solar Performance Maps of the United States’ and argued that it is “of critical importance for project operators in the [East Coast] region to understand the reasons behind below average energy output and whether it is due to malfunctioning equipment or weather variability.”

Vaisala claimed its study puts into long-term context the monthly variations in weather patterns that can have an effect on the productivity of solar plants. Also producing a shorter term, monthly set of data for the year, the company’s energy assessment project manager Gwendalyn Bender said that even though California appeared to have enjoyed 10% higher than expected irradiance for the year, in the monthly breakdown even some of her clients in the West Coast had voiced concerns.

“We actually have many clients with projects in California coming to us with concerns about last year's production numbers,” Bender said.

“As seen in our study, monthly low solar irradiance anomalies had a significant impact on generation, even in the west.”

Projects in California and other West Coast locations were affected in particular by a relatively cool summer and by higher or lower levels of sunshine than normal in the winter months, Vaisala found.

Forecasting for the productivity of PV plants can have a significant impact at several levels on the technology’s overall economic competitiveness, affecting the bankability of projects as well as the expectations of investors. This is in addition to more obvious concerns such as whether maintenance should be scheduled when heavy snowfall that could directly hamper performance is forecast, for example, and therefore expected to have an effect both at the planning, design and development stages of projects as well as once the plants are operational.

Bender of Vaisala spoke to PV Tech’s sister publication, the downstream solar journal PV Tech Power, earlier this year on the importance of accurate, detailed and long term forecasting. Bender said this would grow as the US moves away from the Investment Tax Credit (ITC) support scheme for solar and plants start being more commonly paid by generation output.

“As we shift to a system where you are not paid for what’s in the ground, but for what you produce, which is the world we’re looking at in 2016 [when the US investment tax credit is due to run out], then all of a sudden you care a lot more about the variability of what you’re going to produce,” Bender said.

César Hidalgo of renewables advisory firm DNV GL, told PV Tech Power that not only is irradiance data increasingly viewed with importance by organisations worldwide, including national meteorological agencies, but the quality of data sets is also growing in importance.

“People are more concerned about the quality of the data sets for solar resource assessments. Most lenders and developers are now well educated regarding the need for good solar resource data.”

Read an extensive feature on yield assessment, including interviews with Vaisala and DNV GL, in the second volume of PV Tech Power, available online now.

Read Next

Premium
March 18, 2025
A team of researchers from DEWA R&D Center, Dubai has undertaken a comprehensive review of PV module degradation in desert environments. Their research proposes a new test cycle to identify defects induced in PV modules by harsh desert conditions.
March 18, 2025
France has revised down its solar PV target by 2035 from 100GW to 90GW in its latest Multiannual Energy Programme (PPE3).
March 18, 2025
Under the “multi-year” corporate PPA, Prysmian will purchase power from a 150MWp solar PV plant in the Viterbo province in central Italy.
March 18, 2025
Construction of the solar cell plant is expected to begin in mid-year 2025 with commercial production beginning in the second half of 2026.
March 18, 2025
The construction of the Lidsø solar park started in the summer of 2024 and it is expected to be commissioned this summer.
March 18, 2025
The company signed a 25-year power purchase agreement with Egypt Aluminium for a 1.1GW/200MWh solar-plus-storage project in the country.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
March 19, 2025
12pm EST / 4pm GMT / 5pm CET
Solar Media Events
March 25, 2025
Lisbon, Portugal
Solar Media Events
March 26, 2025
Renaissance Dallas Addison Hotel, Dallas, Texas
Media Partners, Solar Media Events
April 23, 2025
Fortaleza, Brazil
Solar Media Events
April 29, 2025
Dallas, Texas