SunSniffer adopts NASA technology to offer STC values during PV power plant operation

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email
By adopting and modifying technology initially developed by NASA, SunSniffer is able to provide STC (Stanadard Test Conditions) values of each individual module, on a constant basis during pv power plant operation. Image: SunSniffer

By adopting and modifying technology initially developed by NASA, SunSniffer is able to provide STC (Standard Test Conditions) values of each individual module, on a constant basis during pv power plant operation. This unique technology has been developed with the German Aerospace Center, which consists of software managing Big Data with artificial intelligence and high-precision measuring hardware. Results were presented on Fraunhofer CSP, PV Days in October 24, 2018.

Problem

Typcially, the standard way to determine the performance of PV modules in the field is to make inspections of module arrays through thermal imaging IR (Infrared) to detect and locate the potential performance and degredation issues. Then a service in which the faulty modules are demounted, taken to a laboratory for further qualified testing, then potentially transported back to the plant to being re-installed. This is the most time consuming and expensive procedure, which can lead to plant operators skipping minor issues are skipped and only the biggest problems being taken care of. Therefore, the dilema is how to claim on module warranties as the manufacturers need indepedent proof of the issues impacting the performance, typically the accurate percentage of power reduction in the in the field, without demounting and lab-testing expenditures? 

Solution

With its adapted NASA technology, that whole process can be reduced to the push of one button, according to SunSniffer. With a dataset collected for just one week of field operations, coupled with SunSniffer’s ‘virtual flasher‘ of the (Digital Twin technology) can provide the final exact STC values of each module within the dataset chosen. Shadings, soilings or defective modules are recognized beside STC values and classified. Cleaning, repair or exchange services can be coordinated depending on the respective cost efficiencies. This is made possible by an integrated sensor which costs less than 1 Cent per Wp. This works by deploying half-minute interval measurements from the sensors from each individual module, which is processed by artificial intelligence. The more data collected, the better the accuracy of final analysis. 

Application

PV power plants of all sizes, unlimited scalability. 

Platform

Condition-based plant analysis by SunSniffer Digital Twin is part of the SunSniffer PV plant analytics technology, which measures and analyzes PV plants of all sizes, providing the most-precise condition reports and clear solution proposals in case of failures. The system consists of mentioned software as well as of hardware: sensors in each module and a string measurement device. An integrated Gateway transmits all measured data including inverters and environmental sensors to the analyzing Webportal. 

Availability

SunSniffer‘s Digital Twin technology will be released to its customers on December 1st. 2018.

Read Next

PV Tech Premium
July 28, 2021
Amidst a need to scale up solar this decade, PV Tech Premium speaks to Vassilis Papaeconomou, managing director at renewables service provider Alectris, to learn how the solar industry can scale up efficiently, what asset owners and operators need to be aware of when buzzwords such as ‘digitalisation’ and ‘artificial intelligence’ are mentioned, and what the industry might learn from more mature technologies such as wind.
PV Tech Premium
July 5, 2021
As it matures, the solar industry is moving beyond the use of Performance Ratios (PR) as the go-to performance metric for operational sites. Christopher West, head of central engineering - solar PV delivery unit at Statkraft, argues the case for PRs to be replaced by alternative, more evolved methods of assessment.
June 21, 2021
The cost of insuring operational solar farms has skyrocketed over the course of the year, triggered by carriers rethinking their approaches to natural catastrophes and other extreme weather events. This has placed additional importance on mitigation strategies. Kevin Christy, COO for North America at Lightsource bp, details how the solar developer has adapted its strategy in the field.
June 2, 2021
The first phase of GCL System Integration Technology's (GCL-SI) 60GW module factory in Hefei, in China’s Anhui Province, is on track to start production this September.
May 24, 2021
PV Tech Power volume 27 is now available to download, providing a comprehensive and detailed analysis of Europe’s solar market.
May 13, 2021
The solar module manufacturing subsidiary of Italian utility Enel is aiming to scale up annual production capacity to 3GW in the second half of 2023, the company has confirmed.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 6, 2021
Solar Media Events
October 19, 2021
BRISTOL, UK
Solar Media Events
December 1, 2021