Photovoltaics International Papers

Premium
Photovoltaics International Papers, PV Modules
Since the 1980s, ethylene-vinyl acetate (EVA) has been the standard encapsulation material for crystalline photovoltaic modules. From a mechanical point of view, the encapsulant takes the function of a compliant buffer layer surrounding the solar cells. Therefore, understanding its complex mechanical properties is essential for a robust module design that withstands thermal and mechanical loads. In the cured state after lamination, its stiffness features a high sensitivity to temperature especially in the glass transition region around -35°C, and a dependence on time which becomes obvious in relaxation and creep behaviour. This paper outlines the viscoelastic properties of EVA and the corresponding standard experimental methods, as well as the impact on the accuracy of wind and snow load test procedures for PV modules.
Premium
Cell Processing, Photovoltaics International Papers
Quality assurance and process control are becoming increasingly important in the industrial production chain to the manufacturing of silicon solar cells. There are a number of relevant wet chemical processes for the fabrication of standard screen-printed industrial solar cells, mainly for texturization and cleaning purposes. While one-component systems like pure HF for oxide-removal are easy to monitor, i.e., by conductivity measurements, typical texturization processes are much more complex due to the number of constituents. For acidic texturization of multicrystalline silicon wafers, typical mixtures involve amounts of hydrofluoric acid (HF), nitric acid (HNO3) and water. It has also been documented that mixtures can be found where additional additives like phosphoric acid (H3PO4), acetic acid (HOAc) and sulphuric acid (H2SO4) have been used [1, 2]. In alkaline random pyramid texturization for monocrystalline wafers, a base like potassium hydroxide (KOH) or sodium hydroxide (NaOH) and organic additives like 2-propanol (IPA) are used [3]. In addition to these processes, recently developed high-efficiency cell concepts require several additional wet chemical process steps like advanced cleaning processes, chemical edge isolation or single side oxide removal processes [4]. In order to obtain continuously stable and reproducible process results and to overcome process operations based on operator experience, a reliable monitoring of the bath concentrations is essential. Such quality control has the potential for significant cost reductions due to optimized durations between replacements of bath mixtures or shortening of processing times. In this context, the application of on-line analytical methods, either by means of chemical, optical or electrical measurement techniques, is of particular interest.
Premium
Photovoltaics International Papers, Thin Film
Optical probes based on polarized light spectroscopy, including spectroscopic ellipsometry (SE) and polarimetry, have been applied in research and process development for the three major thin-film photovoltaics technologies, including thin-film hydrogenated silicon (Si:H), cadmium telluride (CdTe), and copper indium-gallium diselenide (CuIn1−xGaxSe2). Real-time SE during materials fabrication has provided insights into the nucleation, coalescence, and structural evolution of these thin films. These insights have led, in turn, to guiding principles for PV performance optimization, as well as future directions for real-time process control. The optical properties deduced simultaneously with the layer thicknesses using real-time SE have been applied to characterize the phase composition of materials (amorphous versus crystalline), the mean free path and grain size, and the relative free carrier concentration. As a result, analytical formulae for the optical properties of PV materials have been developed with free parameters that are linked to basic materials properties. This paper shows how the formulae and associated parameter-property relationships can serve as a database for analyzing complete PV stacks, with future prospects for mapping layer thicknesses and basic materials properties in on-line monitoring applications for large-area PV plates and modules.
Premium
Photovoltaics International Papers
When Stion started looking for sites to establish its first volume production plant, Mississippi was not even on its radar. After vetting some “100 different opportunities, state and local flavors and locations,” the San Jose-based thin-film PV module company had “narrowed the list down to a half-dozen or so pretty quickly,” including Texas, Virginia, Michigan, and California, according to CEO Chet Farris.
Premium
Cell Processing, Photovoltaics International Papers
Laser-doped selective emitter (LDSE) technology, invented and patented by the University of New South Wales (UNSW), is presently generating considerable interest in the photovoltaics industry due to its low cost, high efficiency, and suitability for mass production. The excellent results achieved to date – as high as 19.7% on small area laboratory test devices [1], and 19.0% on industrial large-area 156mm wafers [2] – are attracting a similarly impressive array of commercial partners. Nearly 10 companies are at various stages of implementation of LDSE technology variants into production and pilot production. This paper takes a closer look at the potential for mass production of LDSE-based solar cells.
Premium
Photovoltaics International Papers, Thin Film
As recently as a couple of years ago, solar panels based on thin-film manufacturing technology were being promoted as the low-cost alternative to crystalline silicon. Not only was it cheaper, but thin film also had a convincing roadmap which guaranteed this cost advantage for the foreseeable future. That was 2008, when persistently high polysilicon prices seemed inevitable as demand for solar electricity boomed. We now know that assumption to be false, and although we all knew polysilicon prices would fall eventually, no one predicted the speed and magnitude with which they crashed: in the space of several months, prices reached the point where any advantage associated with the lower materials costs of thin-film manufacturing were completely blown away.
Premium
Photovoltaics International Papers, PV Modules
This article highlights an alternative method for increasing short-wavelength external quantum efficiency (EQE) and hence overall conversion efficiency of mc-Si PV modules via luminescent down-shifting (LDS), a technique originally proposed by Hovel et al. [1] in 1979. The potential for efficiency enhancement via LDS has been either predicted or measured for a wide range of PV technologies (see [2] for a review). However, in this article, we will highlight how LDS can be incorporated into the existing encapsulation layer, avoiding any modification to well-established solar cell manufacturing processes and thus offering the potential of a production-ready technology.
Premium
Photovoltaics International Papers, Thin Film
Conversion efficiencies of thin-film silicon solar cells can be increased by nanotexturing of the cells. This nanotexturing step allows for a larger fraction of the incoming light to scatter and diffract, so that both the total absorption of light in the solar cell and the short circuit current is enhanced. In this study, we investigate the optics of thin-film silicon solar cells by numerically simulating Maxwell’s equations by a finite-difference time-domain algorithm. Starting with periodically textured solar cells, the influence of the texture period and height on the quantum efficiency and short circuit current were investigated. With this understanding of the optimized surface texture for periodically textured solar cells, the possibility of interpreting the optics of randomly textured solar cells will be discussed.
Premium
Photovoltaics International Papers, PV Modules
The majority of solar module manufacturers use ethylene-vinyl acetate (EVA) copolymer foils as the encapsulant material for solar cells and thin-film modules. Because EVA needs long processing times for curing, thermoplastic process materials that do not employ chemical cross-linking have been coming more and more into focus in the encapsulation sector. This paper takes a look at the mechanical temperature-dependent properties of a variety of such materials.
Premium
Photovoltaics International Papers, PV Modules
Ammonia, a gas which has its roots in livestock farming, can have potentially detrimental effects on the lifetime and reliability of PV modules. Research into the degree of corrosive effects of this gas on modules is of utmost importance for any module manufacturer guaranteeing a certain specific lifetime for their product. Researchers from SCHOTT and SCHOTT Solar together with the DLG (Deutsche Landwirtschafts-Gesellschaft/German agricultural society) developed a test design involving humidity, temperature and ammonia gas. This design is based on permeation testing and microscopic analysis of samples aged under a controlled atmosphere or from outdoor exposure. Additionally, a highly accelerated test is presented which allows screening materials for use in PV modules within 84 hours. An Arrhenius type of model is used to calculate the acceleration factors involved. Based on this model, the proposed test design is equivalent to more than 20 years of outdoor exposure in the rural environment (in Central Europe).

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA