PVI Paper

A new DSC method for the quality control of PV modules: Simple and quick determination of the degree of crosslinking of EVA encapsulants

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Manuel Hidalgo; Franck Medlege; Marion Vite; Catherine Corfias-Zuccalli; Philippe Voarino; Juan González-León

This paper presents a new differential scanning calorimetry (DSC) method that allows the determination of the degree, or level, of crosslinking of ethylene-vinyl acetate (EVA) copolymers, including EVA films used as encapsulants for photovoltaic (PV) applications. This method can also determine additional characteristics of EVA, such as its weight per cent (wt %) vinyl acetate (VA) content and its fluidity. The paper describes the procedure and its application to EVA film samples laminated at 145°C, for different lengths of time in an industrial-type laminator for PV modules, as well as to EVA uncrosslinked samples of different composition and fluidity. The scope of the method compared to other characterization methods for the degree of crosslinking of EVA is discussed. An experimental
comparison is also made to rheological and gel content methods.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy83MjAwMzFhMGI1LWEtbmV3LWRzYy1tZXRob2QtZm9yLXRoZS1xdWFsaXR5LWNvbnRyb2wtb2YtcHYtbW9kdWxlcy1zaW1wbGUtYW5kLXF1aWNrLWRldGVybWluYXRpb24tb2YtdGhlLWRlZ3JlZS1vZi1jcm9zc2xpbmtpbmctb2YtZXZhLWVuY2Fwc3VsYW50cy5wZGY=

Published In

PVI Issue
Published in November 2011, the 14th edition of Photovoltaics International provides a variety of technical papers from some of the industry’s stalwarts. Features include: TÜV Rheinland on junction box testing; Laser Zentrum Hannover on laser edge isolation of mc-Si cells; Calisolar on the importance of traceability; Fraunhofer ISE on EWT cells; and EPIA on Europe’s LCOE.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events, Upcoming Webinars
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Solar Media Events
May 11, 2021