Requires Subscription: Photovoltaics International Archive

Application of seed and plate metallization to 15.6cm × 15.6cm IBC cells

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Sukhvinder Singh, imec, Leuven, Belgium; Barry O’Sullivan, imec, Leuven, Belgium; Manabu Kyuzo, Kyocera Corporation, Kyoto, Japan; Shruti Jambaldinni, imec, Leuven, Belgium; Loic Tous, imec, Leuven, Belgium; Richard Russell, imec, Leuven, Belgium; Maarten Debucquoy, imec, Leuven, Belgium; Jozef Szlufcik, imec, Leuven, Belgium; Jef Poortmans, imec, Leuven, Belgium; KU Leuven, Belgium; University of Hasselt, Belgium

Interdigitated back contact (IBC) Si solar cells can be highly efficient: record efficiencies of up to 25.0%, measured over a cell area of 121cm2, have been demonstrated on IBC solar cells by SunPower. The high efficiencies achieved can be attributed to several advantages of cells of this type, including the absence of front metal grid shading and a reduced series resistance. Several metallization schemes have been reported for IBC cells, including screen-printing pastes, and physical vapour deposition (PVD) metal and Cu plating with a suitable barrier layer. In the IBC process development at imec, upscaling from small-area 2cm × 2cm cells to full-area 15.6cm × 15.6cm cells was carried out. In the first instance the 3μm-thick sputtered Al metallization scheme from the 2cm × 2cm cells was adopted. This resulted in cell efficiencies of up to 21.3%, limited by a fill factor (FF) of 77.4%. Besides the limited conductivity of this metallization, the sputtering of a thick Al layer is not straightforward from an industrial perspective; moreover, an Al cell metallization cannot be easily interconnected during module fabrication. A Cu-plating metallization for the large-area IBC cells was therefore investigated, and the scheme is described in detail in this paper. A suitable thin sputtered seed layer for the plating process was studied and developed; this layer serves as a barrier against Cu and has good contact properties to both n+ and p+ Si. The sputtering of the various materials could cause damage to the underlying
passivation layer and to the Si at the cell level, leading to a lower open-circuit voltage (Voc) and pseudo fill factor (pFF). Reduction of this damage has made it possible to obtain IBC cells with efficiencies of up to 21.9%, measured over the full wafer area of 239cm2.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8zMWIzYzkwMDIyLWFwcGxpY2F0aW9uLW9mLXNlZWQtYW5kLXBsYXRlLW1ldGFsbGl6YXRpb24tdG8tMTUtNmNtLXgtMTUtNmNtLWliYy1jZWxscy5wZGY=

Published In

Photovoltaics International Archive
Forecasting the evolution of a young, dynamic industry is by definition an uncertain business, and solar is no exception. Rarely, if ever, do the numbers broadcast by any of the various bodies involved in the PV prediction game tally, and even historical deployment rates remain the subject of hot debate. The paradox is that getting forecasts broadly right is going to become increasingly important over the next few years, particularly for those involved in producing the equipment that will support whatever levels of demand come to pass. As discussed by Gaëtan Masson, director of the Becquerel Institute, on p.110 of this issue of Photovoltaics International, although global PV demand appears in rude health, complex political and economic conditions in many individual markets mean the question of how vigorously it will continue to grow in the coming years is less than clear. Yet for the upstream part of the industry, correctly forecasting PV market developments will be critical to ensure the right investments are made along the value chain in technologies that will help spur PV to new levels of competitiveness and thus drive continued demand.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, Thin Film
Two-terminal tandem solar cells based on perovskite/silicon (PK/ Si) technology represent one of the most exciting pathways towards pushing solar cell efficiencies beyond the thermodynamic limit of single-junction crystalline silicon devices. While laboratory efficiencies of these tandem cells have risen to very impressive levels, many important innovations towards enabling their eventual manufacturability have also been made in this rapidly evolving field. In this paper, a number of these processing innovations are highlighted in order to give a more complete view as to the viability of scaling up the processing of these devices. Specifically, the focus is placed on how today’s crystalline silicon process flows could be adapted in order to allow existing cell lines to produce PK/Si cells.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
This paper presents a way to evaluate production windows and related field issues using an adapted failure mode and effects analysis (FMEA) approach. Since PV modules are the most important component in terms of longevity and warranties, the focus of Fraunhofer’s work has been on module manufacturing. The process, however, can also be applied to cell manufacturing and other steps in the value chain.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
Low-temperature interconnection processes for high-efficiency PV cells will be a key R&D topic in the coming years. In reality, to avoid significant deterioration of the surface passivation, the metallization and interconnection processes of silicon heterojunction (SHJ) cells are limited to temperatures below 200°C; tandem cells with a perovskite subcell demand an even greater reduction in process temperature, namely below 130°C. Moreover, to ensure the sustainability of PV production on a TW scale, the use of scarce materials, especially silver, needs to be reduced, as 10% of the world’s supply was already dedicated to PV in 2020. This paper addresses the results obtained in terms of reducing the silver consumption in interconnection technology based on electrical conductive adhesive (ECA) and Pb-free ribbons.
Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
After several years of technological developments, measurement and quality standard specifications, and bifaciality implementations in energy yield simulation programs, bifacial PV has become reliable and will shortly become accepted as a valuable commodity. Since 2020, bifacial passivated emitter and rear cell (PERC) technology has been king of the energy markets, and, in combination with simple tracking systems (e.g. horizontal single-axis tracking – HSAT), the lowest electricity costs have been achieved. Because PERC is reaching its limit in terms of efficiency, and n-type technology is gaining momentum, in the future n-type PV (nPV) will replace PERC technology as the workhorse of the PV electricity market. This paper describes why, and most likely when, this will happen and which n-type technologies will be leading the pack in the race to bring electricity costs well below €0.01/kWh.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
As the PV industry rapidly advances towards annual PV production and installations on a terawatt scale, many aspects that are currently not critical will need to be considered. Among these, material availability is probably one of the most pressing ones. Established production routines will need to be changed, which may pose significant time constraints in the light of the fast-growing market. The focus of this paper will be on the use of silver for solar cell metallization. Past developments are discussed and an overview is given of the fast-growing number of relevant publications from the scientific community that deal with the problems associated with silver.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews the steps to making a breakthrough in TOPCon efficiency, from cell to PV module, by using industrially viable manufacturing processes. A detailed characterization and investigation of the primary losses of JinkoSolar’s TOPCon record cell of July 2020, with an efficiency of 24.8%, is presented.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 4, 2022
New York, USA
Solar Media Events
October 11, 2022
Virtual event