Requires Subscription: Photovoltaics International Archive

Challenges for single-side chemical processing

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Jochen Rentsch, Head of the Wet Chemical and Plasma Technologies, Fraunhofer ISE; Rupprecht Ackermann, Department of Wet Chemical and Plasma Technologies, Fraunhofer ISE; Gero Kästner, Department of Wet Chemical and Plasma Technologies, Fraunhofer ISE; Christoph Schwab, Department for Wet Chemical and Plasma Technologies, Fraunhofer ISE; Martin Zimmer, Department for Wet Chemical and Plasma Technologies, Fraunhofer ISE,; Ralf Preu, Director of the Division for PV Production Technology and Quality Assurance, Fraunhofer ISE

Wet chemical process equipment is widely used in industrial solar cell production, and inline etching systems in particular have attracted more and more attention since their introduction 10 years ago. The horizontal wafer transport within these systems has made it possible to think about single-side wafer treatments even for wet chemical process applications. Since its market introduction in 2004, the chemical edge isolation process based on the single-side removal of the parasitic emitter at the rear side of the solar cells has gained an increasing share of the market in comparison to competing technologies that use laser techniques. However, stabilization and control of such a process under mass production conditions remains challenging. The introduction of new high-efficiency cell concepts involving passivated rear sides will increase the importance of single-side wafer treatments, as the final solar cell performance is significantly affected not only by the complete removal of the parasitic emitter but also by an ideally polished surface on the rear side of the wafer.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9mZjZmOTNjMThmLWNoYWxsZW5nZXMtZm9yLXNpbmdsZXNpZGUtY2hlbWljYWwtcHJvY2Vzc2luZy5wZGY=

Published In

Photovoltaics International Archive
This sixteenth edition of Photovoltaics International marks four years of production of the quarterly journal. As always, our focus is on efficiency and quality improvement and cost reduction in manufacturing.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA