Requires Subscription: Photovoltaics International Archive

Challenges in producing photovoltaic modules on thin wafers

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Emmanuel Van Kerschaver, Senior R&D Engineer, IMEC; Kris Baert, Program Manager of Solar Cells, SOLO Department, IMEC; Jozef Poortmans, Departmen Director Photovoltaics, IMEC

The principal paths to cost reduction for the photovoltaics industry are increasing the efficiency of solar cells and the power density of modules, together with the reduction of the specific consumption of silicon. Following the slowdown in the ever-increasing growth of the PV market earlier this year, and the reduction in the market cost of polysilicon, wafer producers and most cell producers moved back to the 180µm generation substrates. It may take some time for manufacturers to tackle the technological issues that need to be addressed in order to successfully decrease wafer thickness further. In this article, some of the issues related to the production of thinner and thinner cells are outlined and discussed.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy82YTM5NDA3ZTQxLWNoYWxsZW5nZXMtaW4tcHJvZHVjaW5nLXBob3Rvdm9sdGFpYy1tb2R1bGVzLW9uLXRoaW4td2FmZXJzLnBkZg==

Published In

Photovoltaics International Archive
The fourth edition of Photovoltaics International was published in May 2009. It features an exclusive interview with First Solar’s Bruce Sohn on manufacturing and the future. SunPower also outlines the economic benefits of LCOE drivers in Power Generation and Fraunhofer IPA gives an overview of automation in the photovoltaic industry.

Read Next

Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper will accordingly outline the recent activities at CEA-INES concerning the development and understanding of the integration of such shingle cells.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
In this paper, an even greater reduction in wafer thickness, down to 130μm, is evaluated, and the critical steps in terms of breakage rates in cell and module production processes are reviewed. Finally, the mechanical stability and reliability of these thin HJT cells in glass–backsheet and glass–glass module types are addressed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper provides a short overview of historical developments, presents the main approaches in mass production today, discusses potential process simplifications, and briefly touches upon a key topic for the future, namely reducing the silver (Ag) consumption per cell.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
This paper discusses what approaches from the digitalization field can be used quickly and easily to accelerate ramp-up, to analyse overlapping data and to improve production either manually or automatically.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
To embrace the terawatt-scale challenge of the PV market growth, a low-carbon and resource-efficient pathway has to be guaranteed. An approach for doing this is to enable market mechanisms that account for the greenhouse gases emissions, and their associated costs, from PV systems and components.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 6, 2021
Solar Media Events
October 19, 2021
BRISTOL, UK
Solar Media Events
December 1, 2021