Requires Subscription: Photovoltaics International Archive

Current and future metallization challenges and solutions for crystalline cell manufacturing

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Niels E. Posthuma, Team Leader High Efficiency Rear Contact Solar Cells, IMEC; Joachim John, Project Leader, Process Technology Division, IMEC; Guy Beaucarne, Solar Cell Technology Group Leader, IMEC; Emmanuel Van Kerschaver, Senior R&D Engineer, IMEC

In any solar cell process, the metallization step is critical as it often sets conditions and limitations for the other process steps. The main metallization technique used today in Si solar cell production is screen-printing of metallic pastes, namely Ag pastes for the front side, Al pastes for most of the rear side, and Ag or Ag-Al pastes for the solder pads at the rear. While these techniques are clearly robust and convenient, they have limitations. Therefore alternatives are being investigated. A technique that is presently finding its way into production is two-step metallization with Ag plating. Another more radical approach is to avoid printing altogether, instead using some kind of ablation followed by plating. For the rear, the full Al-BSF is being replaced by dielectric passivation and local Al-alloyed contacts. Back-contacted cells are increasingly being introduced in production, and they pose very specific challenges to metallization. For the sustainability of Si photovoltaics, it is crucial that the future metallization solutions only make use of abundantly available and non-toxic materials.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8yNDYyMjcyZGQzLWN1cnJlbnQtYW5kLWZ1dHVyZS1tZXRhbGxpemF0aW9uLWNoYWxsZW5nZXMtYW5kLXNvbHV0aW9ucy1mb3ItY3J5c3RhbGxpbmUtY2VsbC1tYW51ZmFjdHVyaW5nLnBkZg==

Published In

Photovoltaics International Archive
The third edition of Photovoltaics International was published in February 2009. In Thin films we offer Heliovolt enabling rapid printing of microscale CIGS films, and Q-Cells presents requirements for improving diffusion techniques for higher efficiency solar cells in Cell Processing. In Market Watch, we discuss how the USA Stimulus Bill will benefit you.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 17, 2022
Lisbon, Portugal
Upcoming Webinars
May 17, 2022
4:00 PM (CEST) | About 30 minutes
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA