Premium

Cz-Si wafers in solar cell production: Efficiency-limiting defects and material quality control

Facebook
Twitter
LinkedIn
Reddit
Email

By Jonas Haunschild, luminescence Imaging Team Leader, Fraunhofer ISE; Juliane Broisch, In-line Measurement Techniques and Quality Assurance Group, Fraunhofer ISE; Isolde Reis, Member of the luminescence Imaging Team, Fraunhofer ISE; Stefan Rein, Head of the In-line Measurement Techniques and Quality Assurance Group, Fraunhofer ISE

Most high-efficiency solar cells are fabricated from monocrystalline Czochralski silicon (Cz-Si) wafers because the material quality is higher than multicrystalline silicon (mc-Si) wafers. However, the material study presented in this paper reveals strong variations in the material quality of commercially available Cz-Si wafers, leading to a loss in solar cell efficiency of 4% absolute. The reason for this is the presence of defects, which appear as dark rings in photoluminescence (PL) images of the finished solar cells. It is shown that these efficiency-limiting defects originate from oxygen precipitation during emitter diffusion. It is demonstrated that an incoming inspection in the as-cut state is difficult, as strong ring structures in as-cut wafers turn out to originate most often from thermal donors. These are dissolved during high-temperature treatments and are therefore harmless, whereas moderate ring structures in the as-cut state may become severe. That is why critical wafers can be identified and sorted out reliably only after emitter diffusion, by using QSSPC-based lifetime measurements or PL imaging. The two-year statistics gathered from the research line at Fraunhofer ISE on the occurrence of ring defects in Cz-Si wafers indicate that ring defects are highly relevant in terms of material yield.

Published In

Premium
The 15th edition of Photovoltaics International hopes to bring some optimism to 2012 by tackling the key factors on how to cope with the current situation. Contributions come from MIT on using TCAD as a viable method for modelling metal impurity evolution; Alternative Energy Investing presents a comprehensive look at materials cost; and efficiency improvements are on offer by ECN. REC Solar and Tata BP Solar report on module lifetime and IMS Research gives us a brief rundown of 2012 global market expectations.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 7, 2024
Huntington Place Detroit, MI
Solar Media Events
October 8, 2024
San Francisco Bay Area, USA
Solar Media Events
October 15, 2024
Santiago, Chile
Solar Media Events
October 22, 2024
New York, USA