Requires Subscription: Photovoltaics International Archive

Defect detection in photovoltaic modules using electroluminescence imaging

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Amine Mansouri, Researcher, GE Global Research Europe; Martin Bucher, Researcher, GE Global Research Europe; Frederick Koch, Master's Student, GE Global Research Europe; Marcus Zettl, Solar Lab Leader, GE Global Research Europe; Mark Lynass, Head Scientist in Solar, GE Global Research Europe; Oleg Sulima, Senior Photovoltaic Scientist, GE Global Research; Oliver Mayer, Principal Scientist in Solar Systems, GE Global Research Europe; Omar Stern, Senior Scientist in Solar Technologies, GE Global Research Europe

Electroluminescence (EL) imaging for photovoltaic applications has been widely discussed over the last few years. This paper presents the results of a thorough evaluation of this technique in regard to defect detection in photovoltaic modules, as well as for quality assessment. The ability of an EL system to detect failures and deficiencies in both crystalline Si and thin-film PV modules (CdTe and CIGS) is thoroughly analyzed, and a comprehensive catalogue of defects is established.
For crystalline silicon devices, cell breakages resulting from micro-cracks were shown to pose the main problem and to significantly affect the module performance. A linear correlation between the size of the breakages and the power drop in the module was established. Moreover, mechanical stress and temperature change were identified as the major causes of the proliferation of cracks and breakages. For thin-film modules, EL imaging proved the existence of an impressive reduction in the size of localized shunts under the effect of light-soaking (together with a performance improvement of up to 8%). Aside from that, the system voltage was applied in order to monitor transparent conductive oxide (TCO) corrosion effects and laser-scribing-induced failures, as well as several problems related to the module junction box in respect of its sealing and the quality of its electric connectors.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9kM2JlOTkyYzRmLWRlZmVjdC1kZXRlY3Rpb24taW4tcGhvdG92b2x0YWljLW1vZHVsZXMtdXNpbmctZWxlY3Ryb2x1bWluZXNjZW5jZS1pbWFnaW5nLnBkZg==

Published In

Photovoltaics International Archive
Our focus here at Photovoltaics International has always been on efficiency improvement and driving down the cost per watt of modules. In this issue we take a look at some of the market dynamics driving prices in the supply chain so that you can make better decisions to help reduce your overall cost per watt and increase your efficiency at the same time.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 17, 2022
Lisbon, Portugal
Upcoming Webinars
May 17, 2022
4:00 PM (CEST) | About 30 minutes
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA