PVI Paper

Effects of texture additive in large-area diamond wire cut multicrystalline silicon solar cells

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By S. Saravanan, RenewSys India Pvt Ltd, Hyderabad, India; Ch.S.R. Suresh, RenewSys India Pvt Ltd, Hyderabad, India; V.V. Subraveti, RenewSys India Pvt Ltd, Hyderabad, India; K.C. Kumar, RenewSys India Pvt Ltd, Hyderabad, India; U.K. Jayaram, RenewSys India Pvt Ltd, Hyderabad, India

The silicon PV industry has predominantly used silicon wafers sliced by a steel wire, with silicon carbide particles (slurry wire – SW) as an abrasive and polyethylene glycol as a coolant. Low yield, high total thickness variation (TTV), significant material waste and short wire lifetime (and thus high downtime) of SW cutting technology have prompted the wafer slicing industry to develop an alternative technology. Researchers have developed diamond wire (DW) cutting technology for slicing the silicon and demonstrated that it overcomes the drawbacks of SW cutting technology. Although the DW cutting technology has been demonstrated for slicing wafers, the wafer surface is different after the conventional acidic texturing in a silicon solar cell process. It is therefore important to improve the existing process or to develop a new process, in order to produce a homogeneous texturization on DW-cut wafers. In this work, a systematic approach has been pursued to improve the existing process by using an additional etchant (a texture additive) in the acidic mixture. Different etch depths and the corresponding mean reflectance were studied. Optical and morphological studies on DW-cut wafers processed with and without a texture additive have been carried out and interpreted in terms of electrical performance.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy81YjYwYTg3NzJmLWVmZmVjdHMtb2YtdGV4dHVyZS1hZGRpdGl2ZS1pbi1sYXJnZWFyZWEtZGlhbW9uZC13aXJlLWN1dC1tdWx0aWNyeXN0YWxsaW5lLXNpbGljb24tc29sYXItY2VsbHMucGRm

Published In

PVI Issue
With a recent spate of new solar cell records announced for PERC-based architectures pushing conversion efficiencies past 24%, it is a good time to reflect on the pioneering work at SolarWorld – the first to commercialise and ramp PERC to volume production. A special in-depth paper from former members of SolarWorld’s R&D and manufacturing team should be a compelling read and a leading reference paper in the future. Adding to the PERC-based theme is the paper from ISC Konstanz, providing further real world insight into achieving manufacturability of nPERT cells with conversion efficiencies approaching 23%.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Upcoming Webinars
April 28, 2021
4:00 - 4:30 PM CET