Premium

Efficiency and cost effectiveness of large-area perovskite-based tandem solar cells

Facebook
Twitter
LinkedIn
Reddit
Email

By Manoj Jaysankar; Tom Aernouts

Tandem solar cells combine several solar cells with different photoabsorbers, stacked in a descending order of bandgap energies. They come in many flavours, but one promising combination is a bottom cell of c-Si or copper indium gallium selenide (CIGS) and a top cell of perovskite. Perovskite solar cells are thin-film solar cells with many advantages, such as a low-cost, high-throughput sheet-to-sheet and rollto- roll production, and a tuneable bandgap. Their long-term instability, however, is a challenge that needs to be overcome in order to make these cells a success. In this paper it is demonstrated that, by combining comprehensive loss-reduction strategies with effective large-area fabrication, perovskite-based tandem solar modules have the potential to yield power conversion efficiencies (PCEs) that are significantly higher (PCE of up to 45%) than those of established PV technologies, and can be manufactured on an industrial scale.

Published In

Premium
With a recent spate of new solar cell records announced for PERC-based architectures pushing conversion efficiencies past 24%, it is a good time to reflect on the pioneering work at SolarWorld – the first to commercialise and ramp PERC to volume production. A special in-depth paper from former members of SolarWorld’s R&D and manufacturing team should be a compelling read and a leading reference paper in the future. Adding to the PERC-based theme is the paper from ISC Konstanz, providing further real world insight into achieving manufacturability of nPERT cells with conversion efficiencies approaching 23%.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 1, 2024
Dallas, Texas
Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA