PVI Paper

Epitaxial Si lift-off technology: Current status and challenges

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Hariharsudan Sivaramakrishnan Radhakrishnan, (Hari) pursued his Ph.D research at KU Leuven and imec, Belgium, on porous silicon-based gettering and epitaxial Si lift-off and solar cells.; Valérie Depauw, is a research engineer at imec, involved in several EU projects. She started playing with lif t-off techniques at the end of 2004, at the start of her Ph.D, and has not stopped since then. She has built expertise around making “holes” inside silicon, by tailoring porous silicon for kerfless wafering and exploring advanced nanostructures for light trapping in (ultra-) thin crystalline-silicon solar cells.; Kris Van Nieuwenhuysen, Kris Van Nieuwenhuysen obtained her degree in engineering in 2000. She then joined the Si solar cell group of imec, where she has been the main expert in Si epitaxial CVD processes for solar cell fabrication.; Ivan Gordon, obtained his Ph.D from the University of Leuven, Belgium in February 2002. He started to work at imec in June 2003, where he is currently leading the Silicon Photovoltaics group, working on c-Si wafer-based solar cells, thin-film silicon solar cells, and advanced module concepts for ultra-thin c-Si wafer-based cells.; Jef Poortmans, received his Ph.D from the KU Leuven, Belgium, in June 1993. Afterwards he joined the photovoltaics group and, in 2003, became the PV Department Director.

The drive towards better Si utilization (g/Wp) has been an obsession in the Si PV industry over the last few decades as one of the key aspects in making photovoltaic energy production competitive. With the cost of Si still making up a third of the final Si solar module cost, there is continued interest in reducing the cost of Si by producing thinner wafers and reducing kerf losses.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9jMmM4MTVkYzk0LWVwaXRheGlhbC1zaS1saWZ0b2ZmLXRlY2hub2xvZ3ktY3VycmVudC1zdGF0dXMtYW5kLWNoYWxsZW5nZXMucGRm

Published In

PVI Issue
As always we have a selection of technical papers from some of the industry’s leading minds. Radovan Kopecek and Joris Libal from ISC Konstanz tackle one of the biggest issues impeding the rollout of bifacial cell and modules, how to standardise their measurement. As long as there is no commercially available means to measure their gain, bifacial modules will struggle to improve their market penetration. The materials section includes an excellent paper from Fraunhofer THM examining the optimization of diamond wire sawing. The method is becoming increasingly predominant with some equipment manufacturers shelving their slurrybased tools. Here Fraunhofer assesses how to squeeze even more efficiency out of diamond wire saws. CSEM meanwhile explores the required metallization and interconnection process changes required to enable a production-scale shift to silicon heterojunction PV. Mark Osborne provides his latest capacity expansion report as upgrades to higher efficiency lines continue to drive planned investments.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Upcoming Webinars
April 28, 2021
4:00 - 4:30 PM CET