PVI Paper

Module technologies for highefficiency solar cells: The move away from powerful engines in old-fashioned car bodies

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Joris Libal, Research Engineer, ISC Konstanz; Andreas Schneider, Head of the Module Development Department, ISC Konstanz; Andreas Halm, Project Manager, ISC Konstanz; Radovan Kopecek, Head of the Advanced Solar Cells Department, ISC Konstanz

Why change a product which can be sold in high quantities with a large margin? This is one of the reasons why crystalline silicon modules look the same today as they did 30 years ago. In addition, a module has to last for more than 20 years; to change the technology, or even just the material, many complicated, long-lasting and costly tests are necessary. And even after a series of successful tests there is no guarantee of a long-lasting product. Moreover, during the PV crisis starting in 2009, module manufacturers did not have the manpower and budget for introducing novelties into the module market. All the above are reasons why module architecture and materials did not significantly change with time and did not adapt to the introduction of powerful, highly efficient solar cells. After the crisis, however, many module manufacturers became aware that in order to be able to sell modules on the market with a high margin, their products not only have to be cost effective but also must differentiate themselves from the mass product. Consequently high-power, optically nice, colourful, backcontact, transparent, bifacial, light and highly durable modules are now being developed and are gradually being introduced into today’s market. This paper reports on current trends and discusses future developments.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8zNTIyNzhjOTE4LW1vZHVsZS10ZWNobm9sb2dpZXMtZm9yLWhpZ2hlZmZpY2llbmN5LXNvbGFyLWNlbGxzLXRoZS1tb3ZlLWF3YXktZnJvbS1wb3dlcmZ1bC1lbmdpbmVzLWluLW9sZGZhc2hpb25lZC1jYXItYm9kaWVzLnBkZg==

Published In

PVI Issue
In this issue we offer some insights into what the next wave of photovoltaic technologies may look like as that upturn gathers pace. Industry observers have been in broad agreement that the major next-gen PV technology innovations won’t happen straight away. But there’s also little doubt that the search is now on in earnest for the breakthroughs that will come to define the state of the art in the industry in the years to come.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!