PVI Paper

Optimizing site selection decisions in a changing solar marketplace

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Dick Sheehy, Advanced Planning and Site Selection Services Group, CH2M HILL; Nate Monosoff, CH2M HILL

Whether in the USA as a part of a manufacturing resurgence or elsewhere in the world, solar producers need to be smarter than ever about where they choose to locate new operation centres. Solar manufacturing site selection
demands analytical rigour. The intent of this article is to share strategies and tools that can help owners make the best informed choices about where to locate new manufacturing operations.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8wNDlmYjBjZjc3LW9wdGltaXppbmctc2l0ZS1zZWxlY3Rpb24tZGVjaXNpb25zLWluLWEtY2hhbmdpbmctc29sYXItbWFya2V0cGxhY2UucGRm

Published In

PVI Issue
Has the latest round of consolidation in the supply chain enabled a more sustainable growth curve for the solar industry or is this a blip fuelled by subsidies? In this context Photovoltaics International has never been more relevant for your business. Whether you are a glass half empty or full person, the fact remains that orders are up across the board, new markets are coming on stream and analysts’ predictions are increasing again. Optimism is starting to creep into even the most conservative of organisations.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!