Requires Subscription: Photovoltaics International Archive

Overview of challenges in ultrathin substrate handling

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Tim Giesen, Project Manager, Institute for Manufacturing Engineering and Automation IPA; Raphael Adamietz, Project Manager, Institute for Manufacturing Engineering and Automation IPA; Guido Kreck, Institute for Manufacturing Engineering and Automation IPA; Tobias Iseringhausen, Project Manager, Institute for Manufacturing Engineering and Automation IPA; Roland Wertz, Manager, Institute for Manufacturing Engineering and Automation IPA

The positive expectations for the global PV market are driven by state-of-the-art PV products which have become economically attractive because of technical optimization. Nonetheless, scientists and engineers face the next generation of wafer-based PV technologies in terms of processing recipes and automation techniques. In this paper, motivations, challenges and advances relating to the handling of ultrathin PV substrates are identified for future application. A brief look out of the PV box at neighbouring disciplines in high-tech sectors will also be taken. The differences and advances in the automated handling of ultrathin substrates will be highlighted as well as the difficulties for transportation. The advanced production challenges of a gripperbased
substrate movement will be accompanied by increased cleanliness requirements, as test results from the Fraunhofer IPA automation lab show.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9kMjZjYTI5MDZlLW92ZXJ2aWV3LW9mLWNoYWxsZW5nZXMtaW4tdWx0cmF0aGluLXN1YnN0cmF0ZS1oYW5kbGluZy5wZGY=

Published In

Photovoltaics International Archive
Signs earlier in the year of the global industry entering a growth phase have now been confirmed beyond any doubt. Almost all the big-name suppliers have now announced some form of manufacturing capacity expansion, a trend that analysts agree will only gather pace as long as the levels of demand predicted over the next few years turn out to be correct.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 7, 2022
Leonardo Royal London City, London, UK
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
June 22, 2022
Sheraton Austin Hotel at the Capitol, Austin, Texas