Technical Papers

Premium
Market Watch, PV Tech Power Papers
Utility-scale PV | Since the fall of former prime minister Tony Abbott two years ago, the prospects for large-scale solar in Australia have enjoyed a dramatic turnaround. Tom Kenning reports on the changing fortunes of the industry and how storage looks set to become a key partner technology for utility solar.
Premium
Design & Build, PV Tech Power Papers
Module yield | Varying climatic conditions across markets and the individual characteristics of PV technologies undermine accurate predictions of module energy yield using conventional methods. Markus Schweiger, Werner Herrmann, Christos Monokroussos and Uwe Rau describe how a calculation of module performance ratio can be used to accurately assess the efficiency of different PV module technologies in different climates and thus the likely return on investment from a project.
Premium
Financial, Legal, Professional, PV Tech Power Papers
Business models | Corporate PPAs offer environmentally minded businesses a means of reducing their carbon footprint and renewable energy developers a new route to market in the face of declining subsidies. Daniel Kaufman offers some insights to buyers and sellers looking to navigate the many complexities of this new market.
Premium
Financial, Legal, Professional, PV Tech Power Papers
Europe | With the decline of solar subsidies in Europe, the industry is under pressure to find new routes to market. SolarPower Europe policy adviser Sonia Dunlop looks at some of the innovative new business models being developed to help ensure solar has a sustainable future
Premium
Plant Performance, PV Tech Power Papers
O&M | Every photon and electron lost in a PV system represents unrealised revenue. The Solar Energy Research Institute of Singapore has developed a holistic diagnosis package – the PV System Doctor – to identify and cure underperforming PV power plants in real time. The team behind the service explains how it helps maintain a healthy PV system and ensure expected returns – or even surpass them
Premium
Design & Build, PV Tech Power Papers
Varying climatic conditions across markets and the individual characteristics of PV technologies undermine accurate predictions of module energy yield using conventional methods. Markus Schweiger, Werner Herrmann, Christos Monokroussos and Uwe Rau describe how a calculation of module performance ratio can be used to accurately assess the efficiency of different PV module technologies in different climates and thus the likely return on investment from a project
Premium
Photovoltaics International Papers, Thin Film
Innovation in the field of thin-film cells, in addition to economy of scale and the manufacturing learning curve, is an important element in keeping the price of this technology competitive. Most papers on these cells focus on their technology; however, the economic potential of the technology is also important. Of even greater significance, a realistic estimation of the potential, along with the associated costs, of advanced technology, is part of the equation for profitability. Two examples of technology – metallic grids and texturing – are given in this paper; the designs are discussed, and a brief economic analysis is presented for various scenarios of the technologies. Although the profitability of these technologies can be considerable, it is shown that one should be wary of basing decisions purely on potential and on ideal scenarios, and how the cost of a technology can turn a great prospect into a trade-off.
Premium
Photovoltaics International Papers, PV Modules
This paper focuses on the technical progress of high-efficiency crystalline silicon solar cells and modules, specifically with regard to passivated emitter and rear cell (PERC) processes, module description and light induced degradation (LID) data. Through appropriate optimizations of the solar cell and module processes, the cell efficiency achieved in mass production is 21.3%, with module power exceeding 300W. To solve the LID problem, hydrogenation technology developed by UNSW is used, bringing the cell LID rate down to below 1%.
Premium
Fab & Facilities, Photovoltaics International Papers
In this quarterly report on global PV manufacturing capacity expansion announcements we will provide a detailed analysis of 2016. Despite a significant slowdown in new announcements in the second half of the year, 2016 surpassed 2015 by around 16% to exceed a total of 55GW of thin-film, dedicated solar cell and module assembly and integrated PV expansion plans.
Premium
Photovoltaics International Papers, PV Modules
This paper presents a summary of the status of bifacial PV in respect of the technology in mass production, the installed PV systems, and the costs relating both to module production (cost of ownership – COO) and to electricity (levelized cost of energy – LCOE). Since the first bifacial workshop, organized by ISC Konstanz and the University of Konstanz, in 2012, many things have changed. Bifacial cells and modules have become cost effective, with installed systems now adding up to more than 120MWp and the technology becoming bankable. Large electricity providers have recognized the beauty of bifacial installations, as the lowest costs per kWh are attainable with these systems. The authors are sure that by the end of 2017, bifacial PV systems amounting to around 500MWp will have been installed, and that by 2025 this type of system will become the major technology in large ground-mounted installations.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico