Polarized light metrology for thin-film photovoltaics: research and development scale processes


By Robert W. Collins, Center for Photovoltaics Innovation & Commercialization and Department of Physics & Astronomy, University of Toledo; Jian Li, National Renewable Energy Laboratory, and Department of Electrical Engineering & Computer Science, University of Michigan; Michelle N. Sestak, Center for Photovoltaics Innovation & Commercialization and Department of Physics & Astronomy, University of Toledo; Sylvain Marsillac, Associate Professor, Department of Electrical & Computer Engineering, Old Dominion University

Optical probes based on polarized light spectroscopy, including spectroscopic ellipsometry (SE) and polarimetry, have been applied in research and process development for the three major thin-film photovoltaics technologies, including thin-film hydrogenated silicon (Si:H), cadmium telluride (CdTe), and copper indium-gallium diselenide (CuIn1−xGaxSe2). Real-time SE during materials fabrication has provided insights into the nucleation, coalescence, and structural evolution of these thin films. These insights have led, in turn, to guiding principles for PV performance optimization, as well as future directions for real-time process control. The optical properties deduced simultaneously with the layer thicknesses using real-time SE have been applied to characterize the phase composition of materials (amorphous versus crystalline), the mean free path and grain size, and the relative free carrier concentration. As a result, analytical formulae for the optical properties of PV materials have been developed with free parameters that are linked to basic materials properties. This paper shows how the formulae and associated parameter-property relationships can serve as a database for analyzing complete PV stacks, with future prospects for mapping layer thicknesses and basic materials properties in on-line monitoring applications for large-area PV plates and modules.

Published In

The 12th Edition was published in May 2011. Highlights from this edition include Conergy’s in-depth study of MES in PV facilities; University of Konstanz heralds the return of UMG-Si; RWTH Aachen University details the gettering options available for selective emitters; TU Delft presents an overview of breakage issues for silicon wafers and cells; and the University of Toledo outlines the benefits of RTSE in polarized light metroscopy.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA
Solar Media Events
May 22, 2024
London, UK
Upcoming Webinars
May 29, 2024
11am (EDT) / 5pm (CEST)