Requires Subscription: Photovoltaics International Archive

Potential for mono-cast material to achieve high efficiencies in mass production

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Milica Mrcarica, Senior R&D Engineer, Photovoltech NV

Despite the drop in price of silicon wafers, they are still one of the main factors influencing the cost and performance of Si-based solar cells. These two consequences have initiated a growing commercial interest in mono-cast (castmono, mono-like or quasi-mono) Si wafers, supported by R&D in the areas of material characterization, correlation with cell efficiencies, and mono-cast material use in advanced cell technologies. This paper gives a broad overview and comparison of commercially available grades of mono-cast material from different suppliers. The performance of the material from production in high-throughput screen-printing lines, as well as an analysis of the main material characteristics influencing these results, is presented. A characterization using a lifetime tester and a photoluminescence (PL) imaging tool has shown that not only grain boundaries but also dislocations could cause a drop in cell Voc of more than 15mV. Wafers with large surface areas of Si lattice planes, when processed with anisotropic texturing, could yield an increase in Isc greater than 400mA for 6" substrates, as compared to the isotropic-textured equivalents. Furthermore, when a high-grade mono-cast material processed in anisotropic texturing was compared with CZ mono material from the same supplier and of the same resistivity, light-induced degradation (LID), presented as combined Voc and Isc degradation, was only one-third of that in CZ material. However, although mono-cast material has the potential to increase cell line performance to the same level as that gained by important process and technological improvements, it imposes very high requirements for better material sorting in order to achieve stable cell electrical performance and module aesthetics acceptable to the market.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9iYjJlN2QxYmQ1LXBvdGVudGlhbC1mb3ItbW9ub2Nhc3QtbWF0ZXJpYWwtdG8tYWNoaWV2ZS1oaWdoLWVmZmljaWVuY2llcy1pbi1tYXNzLXByb2R1Y3Rpb24ucGRm

Published In

Photovoltaics International Archive
For manufacturers who had their heads in the bunker during 2012, fighting falling ASPs and eroding margins, the nineteenth edition brings you details of what lies in store for this coming year. Wright Williams & Kelly return in this issue with their popular analysis of payback on technology buys; crucially they analyze n-type wafers, Al2O3 passivation and copper metallization. SERIS shows us how to achieve 18.7% efficiencies using low-cost etching techniques on diffused wafers. We also have two important technology roundups: CIGS from Helmholtz Berlin, and PV module encapsulation techniques from Fraunhofer ISE.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 7, 2022
Leonardo Royal London City, London, UK
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
June 22, 2022
Sheraton Austin Hotel at the Capitol, Austin, Texas