Requires Subscription: Photovoltaics International Archive

Potential-induced degradation effects on crystalline silicon cells with various anti-reflective coatings

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Simon Koch, PI-Berlin; Juliane Berghold, Head of R&D, PI-Berlin; Paul Grunow, Member of the Board and Senior Consultant., PI-Berlin

Because potential-induced degradation (PID) can cause power losses of more than 30% for modules out in the field, there has already been an extensive effort placed on avoiding this adverse phenomenon. A key feature at the cell level is the silicon nitride (SiNx) anti-reflective coating (ARC). Apart from the known dependency of PID susceptibility on the refractive index, the impact of the deposition parameters has also been under investigation. This paper illustrates the influence of different silicon nitrite layers and their ability to prevent PID. A large number of cells and modules were therefore manufactured, differing only in the type of ARC. The modules were subsequently PID tested under three different climatic conditions, and acceleration factors and activation energies were determined from these tests. In addition this paper presents the results of addressing the weak-light performance and the hot-spot risk of panels after PID exposure. Finally, the reversibility of PID was also investigated in relation to the state of degradation of these samples.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9iNjFiYTljY2RhLXBvdGVudGlhbGluZHVjZWQtZGVncmFkYXRpb24tZWZmZWN0cy1vbi1jcnlzdGFsbGluZS1zaWxpY29uLWNlbGxzLXdpdGgtdmFyaW91cy1hbnRpcmVmbGVjdGl2ZS1jb2F0aW5ncy5wZGY=

Published In

Photovoltaics International Archive
Our focus here at Photovoltaics International has always been on efficiency improvement and driving down the cost per watt of modules. In this issue we take a look at some of the market dynamics driving prices in the supply chain so that you can make better decisions to help reduce your overall cost per watt and increase your efficiency at the same time.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 7, 2022
Leonardo Royal London City, London, UK
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
June 22, 2022
Sheraton Austin Hotel at the Capitol, Austin, Texas