Premium

Potential-induced degradation effects on crystalline silicon cells with various anti-reflective coatings

Facebook
Twitter
LinkedIn
Reddit
Email

By Simon Koch, PI-Berlin; Juliane Berghold, Head of R&D, PI-Berlin; Paul Grunow, Member of the Board and Senior Consultant., PI-Berlin

Because potential-induced degradation (PID) can cause power losses of more than 30% for modules out in the field, there has already been an extensive effort placed on avoiding this adverse phenomenon. A key feature at the cell level is the silicon nitride (SiNx) anti-reflective coating (ARC). Apart from the known dependency of PID susceptibility on the refractive index, the impact of the deposition parameters has also been under investigation. This paper illustrates the influence of different silicon nitrite layers and their ability to prevent PID. A large number of cells and modules were therefore manufactured, differing only in the type of ARC. The modules were subsequently PID tested under three different climatic conditions, and acceleration factors and activation energies were determined from these tests. In addition this paper presents the results of addressing the weak-light performance and the hot-spot risk of panels after PID exposure. Finally, the reversibility of PID was also investigated in relation to the state of degradation of these samples.

Published In

Premium
Our focus here at Photovoltaics International has always been on efficiency improvement and driving down the cost per watt of modules. In this issue we take a look at some of the market dynamics driving prices in the supply chain so that you can make better decisions to help reduce your overall cost per watt and increase your efficiency at the same time.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
February 28, 2024
Seattle, USA
Solar Media Events, Industry Events
March 12, 2024
Frankfurt, Germany
Upcoming Webinars
March 13, 2024
9am EDT / 1pm GMT / 2pm CET
Solar Media Events
March 19, 2024
Texas, USA