PVI Paper

Potential-induced degradation of thin- film modules: Prediction of outdoor behaviour

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Thomas Weber, Project Manager, PI-Berlin; Juliane Berghold, Head of the PV Technology and R&D Services Business Unit, PI-Berlin

The current standards (IEC 61646 and IEC 61730-2, and IEC 62804 draft for c-Si only) are clearly insufficient to guarantee satisfactory long-term stability and energy yield for thin-film modules, given that reports from the field, as well as from laboratory test results (beyond IEC testing), in some cases show significant degradation of IEC-certified modules. Accordingly, thin-film modules can also exhibit degradation effects, such as TCO corrosion and power degradation, because of potential-induced degradation (PID). This paper presents the results obtained for thin-film modules subjected to bias and damp-heat (BDH) conditions in both indoor and outdoor tests. In order to assess module lifetimes for different thin-film technologies with respect to PID, indoor- and outdoor-determined leakage currents are compared and analysed, taking into account weather data and results from accelerated ageing tests. Finally, on the basis of simulations and investigations for different installation locations, module lifetimes are estimated and discussed.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy81N2FhNTdhYjg3LXBvdGVudGlhbGluZHVjZWQtZGVncmFkYXRpb24tb2YtdGhpbi1maWxtLW1vZHVsZXMtcHJlZGljdGlvbi1vZi1vdXRkb29yLWJlaGF2aW91ci5wZGY=

Published In

PVI Issue
Now that the PV industry has unquestionably entered a new growth phase, all eyes are on which technologies will win through into the mainstream of PV manufacturing. PERC, n-type, p-type bifacial, heterojunction – all have become familiar terms in the ever-growing constellation of solar cell technologies. The question is which will offer manufacturers what they are looking for in improving efficiencies and cutting costs.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!