PVI Paper

Printed PV: Nanosolar unveils 640MW utilityscale panel fab, high-efficiency CIGS cell production

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Tom Cheyney

After staying relatively quiet for much of the past year, thin-film PV manufacturer Nanosolar came out with a full docket of announcements on 9/9/09: the completion of its major panel-assembly factory near Berlin; the start of serial rollto-roll production of its flexible copperindium-gallium-(di)selenide cells in the company’s San Jose facility; $4.1 billion in panel purchases from customers – including some of the world’s largest utility companies; NREL-verified cell efficiencies up to 16.4%; and new technical details of both its printed CIGS cell technology and utility-scale panels.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8zMDJmNjA0OTMxLXByaW50ZWQtcHYtbmFub3NvbGFyLXVudmVpbHMtNjQwbXctdXRpbGl0eXNjYWxlLXBhbmVsLWZhYi1oaWdoZWZmaWNpZW5jeS1jaWdzLWNlbGwtcHJvZHVjdGlvbi5wZGY=

Published In

PVI Issue
The sixth edition of Photovoltaics International was published in November 2009 and includes a special BIPV focus. In addition, the Thin Film section offers a comparison of different ceramic Al-doped ZnO target materials by Fraunhofer IST, and Q-Cells unveils its production technology roadmap for boosting cell efficiences in Cell Processing.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper will accordingly outline the recent activities at CEA-INES concerning the development and understanding of the integration of such shingle cells.
PVI Paper
Cell Processing, Photovoltaics International Papers
In this paper, an even greater reduction in wafer thickness, down to 130μm, is evaluated, and the critical steps in terms of breakage rates in cell and module production processes are reviewed. Finally, the mechanical stability and reliability of these thin HJT cells in glass–backsheet and glass–glass module types are addressed.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper provides a short overview of historical developments, presents the main approaches in mass production today, discusses potential process simplifications, and briefly touches upon a key topic for the future, namely reducing the silver (Ag) consumption per cell.
PVI Paper
Fab & Facilities, Photovoltaics International Papers
This paper discusses what approaches from the digitalization field can be used quickly and easily to accelerate ramp-up, to analyse overlapping data and to improve production either manually or automatically.
PVI Paper
Fab & Facilities, Photovoltaics International Papers
To embrace the terawatt-scale challenge of the PV market growth, a low-carbon and resource-efficient pathway has to be guaranteed. An approach for doing this is to enable market mechanisms that account for the greenhouse gases emissions, and their associated costs, from PV systems and components.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 15, 2021
Solar Media Events
July 6, 2021
Solar Media Events
August 24, 2021
Solar Media Events, Upcoming Webinars
October 6, 2021