PVI Paper

Ramping a novel cadmium telluride thin-film solar photovoltaic module production process

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Kurt Barth, Founder, Abound Solar; Mark Chen, Director of Marketing, Abound Solar

Thin-film solar photovoltaic technology offers the benefits of low-cost and high-volume production. Yet numerous thin-film PV startups have struggled in their efforts to commercialize complex, expensive production technologies, as production ramps have taken longer than expected, and venture capital and other sources of funding have run dry. This article describes a proprietary cadmium telluride (CdTe) thin-film module production process commercialized by Abound Solar: heated-pocket deposition (HPD) of the semiconductor layer, and the replacement of a traditional lamination process with a novel edge seal. The simple production process has resulted in a fast ramp of module efficiency and throughput. The paper will also describe how the process also results in fast throughput, high yields, and low manufacturing and capital equipment costs.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9lOTZiYzcwM2UzLXJhbXBpbmctYS1ub3ZlbC1jYWRtaXVtLXRlbGx1cmlkZS10aGluZmlsbS1zb2xhci1waG90b3ZvbHRhaWMtbW9kdWxlLXByb2R1Y3Rpb24tcHJvY2Vzcy5wZGY=

Published In

PVI Issue
The ninth edition of Photovoltaics International was published in August 2010. It features Fraunhofer IISB looking at advanced process control techniques in Cell Processing, NREL gives an atmospheric thin-film deposition technique overview, and in Power Generation REC looks at reducing BOS costs with new technology and economies of scale.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!