Requires Subscription: Photovoltaics International Archive

The role of encapsulants in standard and novel crystalline silicon module concepts

Share on facebook
Share on twitter
Share on linkedin
Share on reddit
Share on email

By Verena Steckenreiter, Si Thin-Film Technology Group, ISFH; Arnaud Morlier, Module and Interconnection Technology Group, ISFH; Marc Köntges, Head of Group, Module and Interconnection Technology, ISFH; Sarah Kajari-Schröder, Head of Group, Silicon Thin-Film, ISFH; Rolf Brendel, Director, ISFH

Encapsulants play a crucial role in ensuring the long-term stability of the power output of PV modules. For many years the most popular encapsulation material for crystalline silicon modules has been ethylene vinyl acetate (EVA), which leads the market because of its cost-effectiveness. Innovations in crystalline silicon cell and module technology, however, have changed the requirements that the encapsulants have to meet. A wide range of other encapsulation materials is also available; such alternatives offer improved outdoor
stability and gains in module performance. Furthermore, innovative module concepts that have new sets of requirements are under development. One attractive module concept in particular envisages the attachment of pieces of crystalline Si to the large module glass at an early stage, followed by the processing of the Si cell and the series interconnection at the module level using known processes from thin-film photovoltaics. This so-called thin-film/wafer hybrid silicon (HySi) approach relies heavily on module-level processing of Si solar cells, and is a new field of research. This paper discusses the applicability of silicone encapsulants for
module-level processing and compares their requirements with those of conventional EVA.


Published In

Photovoltaics International Archive
The period of ‘profitless prosperity’ in the PV industry is finally at an end. Throughout 2013, despite continued economic woes, the PV industry has continued to expand and finally become a global industry. Market forecasts indicating that the sector could reach its next 100GW milestone in just the next two years suggest the industry is on the cusp of another period of strong growth. All the signs confirm this is the case, with utilization rates at their highest level since 2010, companies reporting full order books well into next year and the first tentative announcements of factory capacity expansions making the headlines.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA