Requires Subscription: Photovoltaics International Archive

Towards a high-throughput metallization for silicon solar cells using rotary-printing methods

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Andreas Lorenz, studied printing technology at t he University of Printing and Media in Stuttgart, Germany, and received his diploma degree in 2006 for his work at manroland AG on printed electronics applications using flexography.; Anna Münzer, studied physics at the Eberhard Karls University of Tübingen, Germany, where she completed her bachelor’s in 2015.; Thomas Ott, received his diploma degree in mechatronics engineering from the University of Applied Sciences Ulm, Germany.; Florian Clement, is head of the MWT solar cells/printing technology group. He studied physics at the Ludwig Maximilian University of Munich and the University of Freiburg, and obtained his diploma degree in 2005; Martin Lehner; Armin Senne; Roland Greutmann; Heinz Brocker; Friedhelm Hage

Modern single metallization lines using flatbed screen printing (FSP) can realize a maximum output of approximately 2,000 wafers/h. For several reasons, achieving a significant further increase in throughput of the FSP process is technically challenging.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy80YmIyYWI4ZDA0LXRvd2FyZHMtYS1oaWdodGhyb3VnaHB1dC1tZXRhbGxpemF0aW9uLWZvci1zaWxpY29uLXNvbGFyLWNlbGxzLXVzaW5nLXJvdGFyeXByaW50aW5nLW1ldGhvZHMucGRm

Published In

Photovoltaics International Archive
As always we have a selection of technical papers from some of the industry’s leading minds. Radovan Kopecek and Joris Libal from ISC Konstanz tackle one of the biggest issues impeding the rollout of bifacial cell and modules, how to standardise their measurement. As long as there is no commercially available means to measure their gain, bifacial modules will struggle to improve their market penetration. The materials section includes an excellent paper from Fraunhofer THM examining the optimization of diamond wire sawing. The method is becoming increasingly predominant with some equipment manufacturers shelving their slurrybased tools. Here Fraunhofer assesses how to squeeze even more efficiency out of diamond wire saws. CSEM meanwhile explores the required metallization and interconnection process changes required to enable a production-scale shift to silicon heterojunction PV. Mark Osborne provides his latest capacity expansion report as upgrades to higher efficiency lines continue to drive planned investments.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 7, 2022
Leonardo Royal London City, London, UK
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
June 22, 2022
Sheraton Austin Hotel at the Capitol, Austin, Texas