Premium

Towards a high-throughput metallization for silicon solar cells using rotary-printing methods

Facebook
Twitter
LinkedIn
Reddit
Email

By Andreas Lorenz, studied printing technology at t he University of Printing and Media in Stuttgart, Germany, and received his diploma degree in 2006 for his work at manroland AG on printed electronics applications using flexography.; Anna Münzer, studied physics at the Eberhard Karls University of Tübingen, Germany, where she completed her bachelor’s in 2015.; Thomas Ott, received his diploma degree in mechatronics engineering from the University of Applied Sciences Ulm, Germany.; Florian Clement, is head of the MWT solar cells/printing technology group. He studied physics at the Ludwig Maximilian University of Munich and the University of Freiburg, and obtained his diploma degree in 2005; Martin Lehner; Armin Senne; Roland Greutmann; Heinz Brocker; Friedhelm Hage

Modern single metallization lines using flatbed screen printing (FSP) can realize a maximum output of approximately 2,000 wafers/h. For several reasons, achieving a significant further increase in throughput of the FSP process is technically challenging.

Published In

Premium
As always we have a selection of technical papers from some of the industry’s leading minds. Radovan Kopecek and Joris Libal from ISC Konstanz tackle one of the biggest issues impeding the rollout of bifacial cell and modules, how to standardise their measurement. As long as there is no commercially available means to measure their gain, bifacial modules will struggle to improve their market penetration. The materials section includes an excellent paper from Fraunhofer THM examining the optimization of diamond wire sawing. The method is becoming increasingly predominant with some equipment manufacturers shelving their slurrybased tools. Here Fraunhofer assesses how to squeeze even more efficiency out of diamond wire saws. CSEM meanwhile explores the required metallization and interconnection process changes required to enable a production-scale shift to silicon heterojunction PV. Mark Osborne provides his latest capacity expansion report as upgrades to higher efficiency lines continue to drive planned investments.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 1, 2024
Dallas, Texas
Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA