PVI Paper

Using a field-assisted simultaneous synthesis and transfer method to print CIGS thin-film PV devices

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Louay Eldada, CTO, HelioVolt Corp.

In recent years, a new generation of solar electric products has emerged from the lab into the global market: thin-film technologies that employ approximately 1% of the active, expensive photovoltaic material used by standard crystalline-silicon cells. Through a combination of cost advantages and new product applications, CdTe, a-Si and CIGS thin-film PV have the potential to foster a paradigm shift toward distributed electricity generation at cost parity with other forms of energy. But until recently, the photoactive compound has not had a reliable, rapid manufacturing process that could scale effectively to multi-megawatt-scale volume production and provide significant amounts of electricity at the point of use. This article describes a novel process, known as field-assisted simultaneous synthesis and transfer (FASST) printing, a manufacturing approach that enables the rapid printing of microscale CIGS films with p- and n-type nanodomains that are critical for achieving the highest efficiencies possible.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy82M2ExYTc2ODQwLXVzaW5nLWEtZmllbGRhc3Npc3RlZC1zaW11bHRhbmVvdXMtc3ludGhlc2lzLWFuZC10cmFuc2Zlci1tZXRob2QtdG8tcHJpbnQtY2lncy10aGluZmlsbS1wdi1kZXZpY2VzLnBkZg==

Published In

PVI Issue
The third edition of Photovoltaics International was published in February 2009. In Thin films we offer Heliovolt enabling rapid printing of microscale CIGS films, and Q-Cells presents requirements for improving diffusion techniques for higher efficiency solar cells in Cell Processing. In Market Watch, we discuss how the USA Stimulus Bill will benefit you.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!