Using a field-assisted simultaneous synthesis and transfer method to print CIGS thin-film PV devices


By Louay Eldada, CTO, HelioVolt Corp.

In recent years, a new generation of solar electric products has emerged from the lab into the global market: thin-film technologies that employ approximately 1% of the active, expensive photovoltaic material used by standard crystalline-silicon cells. Through a combination of cost advantages and new product applications, CdTe, a-Si and CIGS thin-film PV have the potential to foster a paradigm shift toward distributed electricity generation at cost parity with other forms of energy. But until recently, the photoactive compound has not had a reliable, rapid manufacturing process that could scale effectively to multi-megawatt-scale volume production and provide significant amounts of electricity at the point of use. This article describes a novel process, known as field-assisted simultaneous synthesis and transfer (FASST) printing, a manufacturing approach that enables the rapid printing of microscale CIGS films with p- and n-type nanodomains that are critical for achieving the highest efficiencies possible.

Published In

The third edition of Photovoltaics International was published in February 2009. In Thin films we offer Heliovolt enabling rapid printing of microscale CIGS films, and Q-Cells presents requirements for improving diffusion techniques for higher efficiency solar cells in Cell Processing. In Market Watch, we discuss how the USA Stimulus Bill will benefit you.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA
Solar Media Events
May 22, 2024
London, UK
Upcoming Webinars
May 29, 2024
11am (EDT) / 5pm (CEST)