Vesuvius’ ‘SOLAR Crucible MLC’ offers higher yield mono-like silicon ingots

November 26, 2012
Facebook
Twitter
LinkedIn
Reddit
Email

Vesuvius, which provides an extended range of refractory products used in the manufacturing of thin film and polycrystalline solar panels has introduced the ‘SOLAR Crucible MLC,’  a crucible used for the fusion and the crystallization of polysilicon in the manufacturing of mono-like silicon ingots. The system has been specially engineered to match mono-like special requirements.

Problem

Improving the both the high-purity and yield of quasi-mono ingots is key to reducing costs and enable the wider adoption of the technology.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

SOLAR Crucible MLC is a coated ‘Mono-Like’ crucible designed to optimize mono-crystal growth in multi-crystalline ingot growth furnaces leading to higher yield of mono-like wafers per ingot. The crucible combines unique and proprietary composition, geometrical parameters and manufacturing process enabling it to increase the yield of mono-crystal wafers per ingot. In particular, the crucible presents extremely high internal bottom flatness that ensures a perfect seed alignment. Such alignment is critical to prevent undesired multicrystallization at the vertical of seed interfaces and to disrupt the targeted mono-crystal growth. Thermal gradients within the silicon melt are another source of undesired multi-crystallization phenomena during the cycle. To prevent such thermal gradients, SOLAR Crucible MLC is designed to enable high and homogeneous heat convection along the entire bottom surface of the crucible. The crucible also combines unique and proprietary composition and geometrical parameters enabling to reduce the migration of impurities into the molten silicon during the crystal growth process. Such reduced migration of impurities translates into up to 25% bottom red zone reduction and into increased average lifetime of mono-like wafers, according to the company. 

Applications

Silicon ingot casting in multi-crystallization furnaces using the mono-cast technology.

Platform

Each SOLAR Crucible MLC is designed to ensure safety in operation and to prevent any leakage. All designs are validated through finite element analysis simulating constraints and deformations in the crucible, using a minimum safety factor of 4. Packaging SOLAR Crucible MLC is available in both industrial and laboratory size depending on customer’s needs.

Availability

September 2012 onwards. 

Read Next

December 31, 2025
The Chinese PV industry has witnessed a wave of collective price hikes across the supply chain, from wafers, solar cells, to modules, with prices rising to varying degrees.
December 31, 2025
The government of Bahrain has laid the foundation stone for a 100MW solar power plant in the Al Dur area of the Southern Governorate. 
December 31, 2025
As the year comes to an end, we bring you a recap of the most-read stories throughout 2025, with the US taking most of the spotlight.
Sponsored
December 31, 2025
LONGi hosted a 'green tech for a shared future' event at COP30, which emphasised the importance of the integration of renewable technologies.
December 31, 2025
Premier Energies and Waaree have both won module supply orders, while KP Group has signed a MoU with the Government of Botswana. 
December 31, 2025
T1 Energy has completed its first sale of Section 45X production tax credits (PTCs) in a deal valued at US$160 million.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland