Vesuvius’ ‘SOLAR Crucible MLC’ offers higher yield mono-like silicon ingots

Facebook
Twitter
LinkedIn
Reddit
Email

Vesuvius, which provides an extended range of refractory products used in the manufacturing of thin film and polycrystalline solar panels has introduced the ‘SOLAR Crucible MLC,’  a crucible used for the fusion and the crystallization of polysilicon in the manufacturing of mono-like silicon ingots. The system has been specially engineered to match mono-like special requirements.

Problem

Improving the both the high-purity and yield of quasi-mono ingots is key to reducing costs and enable the wider adoption of the technology.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

Solution

SOLAR Crucible MLC is a coated ‘Mono-Like’ crucible designed to optimize mono-crystal growth in multi-crystalline ingot growth furnaces leading to higher yield of mono-like wafers per ingot. The crucible combines unique and proprietary composition, geometrical parameters and manufacturing process enabling it to increase the yield of mono-crystal wafers per ingot. In particular, the crucible presents extremely high internal bottom flatness that ensures a perfect seed alignment. Such alignment is critical to prevent undesired multicrystallization at the vertical of seed interfaces and to disrupt the targeted mono-crystal growth. Thermal gradients within the silicon melt are another source of undesired multi-crystallization phenomena during the cycle. To prevent such thermal gradients, SOLAR Crucible MLC is designed to enable high and homogeneous heat convection along the entire bottom surface of the crucible. The crucible also combines unique and proprietary composition and geometrical parameters enabling to reduce the migration of impurities into the molten silicon during the crystal growth process. Such reduced migration of impurities translates into up to 25% bottom red zone reduction and into increased average lifetime of mono-like wafers, according to the company. 

Applications

Silicon ingot casting in multi-crystallization furnaces using the mono-cast technology.

Platform

Each SOLAR Crucible MLC is designed to ensure safety in operation and to prevent any leakage. All designs are validated through finite element analysis simulating constraints and deformations in the crucible, using a minimum safety factor of 4. Packaging SOLAR Crucible MLC is available in both industrial and laboratory size depending on customer’s needs.

Availability

September 2012 onwards. 

Read Next

May 28, 2025
The expansion is 100% compliant with the Indian government's requirement of Bureau of Indian Standards (BIS).
May 28, 2025
Arevon Energy has finalised US$98 million in tax equity financing for a 265MW portfolio currently under construction in Indiana.
May 28, 2025
The German state of North Rhine-Westphalia has launched a Federal Council initiative to accelerate the development of floating solar (FPV) on artificial lakes.
May 28, 2025
Renewables developer Solaria has reached an agreement in principle with Spanish bank Banco Sabadell to finance a 175MW solar PV plant in Spain.
May 28, 2025
ISC Konstanz is working with US solar cell manufacturer Suniva on its 1GW silicon solar cell production facility in the state of Georgia.
May 28, 2025
In 2024, 20 million people improved their access to energy through the acquisition of solar energy kits (SEKs), according to GOGLA.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 17, 2025
Napa, USA
Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 8, 2025
Asia