Vesuvius’ ‘SOLAR Crucible MLC’ offers higher yield mono-like silicon ingots

November 26, 2012
Facebook
Twitter
LinkedIn
Reddit
Email

Vesuvius, which provides an extended range of refractory products used in the manufacturing of thin film and polycrystalline solar panels has introduced the ‘SOLAR Crucible MLC,’  a crucible used for the fusion and the crystallization of polysilicon in the manufacturing of mono-like silicon ingots. The system has been specially engineered to match mono-like special requirements.

Problem

Improving the both the high-purity and yield of quasi-mono ingots is key to reducing costs and enable the wider adoption of the technology.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

SOLAR Crucible MLC is a coated ‘Mono-Like’ crucible designed to optimize mono-crystal growth in multi-crystalline ingot growth furnaces leading to higher yield of mono-like wafers per ingot. The crucible combines unique and proprietary composition, geometrical parameters and manufacturing process enabling it to increase the yield of mono-crystal wafers per ingot. In particular, the crucible presents extremely high internal bottom flatness that ensures a perfect seed alignment. Such alignment is critical to prevent undesired multicrystallization at the vertical of seed interfaces and to disrupt the targeted mono-crystal growth. Thermal gradients within the silicon melt are another source of undesired multi-crystallization phenomena during the cycle. To prevent such thermal gradients, SOLAR Crucible MLC is designed to enable high and homogeneous heat convection along the entire bottom surface of the crucible. The crucible also combines unique and proprietary composition and geometrical parameters enabling to reduce the migration of impurities into the molten silicon during the crystal growth process. Such reduced migration of impurities translates into up to 25% bottom red zone reduction and into increased average lifetime of mono-like wafers, according to the company. 

Applications

Silicon ingot casting in multi-crystallization furnaces using the mono-cast technology.

Platform

Each SOLAR Crucible MLC is designed to ensure safety in operation and to prevent any leakage. All designs are validated through finite element analysis simulating constraints and deformations in the crucible, using a minimum safety factor of 4. Packaging SOLAR Crucible MLC is available in both industrial and laboratory size depending on customer’s needs.

Availability

September 2012 onwards. 

Read Next

October 15, 2025
Wood Mackenzie has warned of a supply bottleneck as the renewable energy shift drives a spike in global copper demand over the next decade.
October 15, 2025
The average price of a solar PPA signed in North America increased 4% between the second and third quarters of 2025, according to LevelTen.
October 15, 2025
A report by IRENA and others has highlighted the need for yearly renewable energy deployments to almost double between now and 2030.
October 15, 2025
Independent power producer (IPP) Geronimo has begun construction on it’s150MW solar project in Illinois and commissioned the 125MW PV project in Michigan.
October 15, 2025
Ciel & Terre has launched a new floating PV structure designed to address the increasingly large scale of floating solar projects.
October 15, 2025
Indian module manufacturer Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, has secured solar PV module orders worth INR6.89 billion (US$78 million).

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 21, 2025
New York, USA
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK