Fraunhofer ISE provides cell-to-module power analysis modelling for bifacial solar cells

Facebook
Twitter
LinkedIn
Reddit
Email
Users can now investigate the effect of a second photoactive side of the solar cell within the module stack. Image: Fraunhofer ISE

The Fraunhofer Institute for Solar Energy Systems has implemented new analytic models into the software SmartCalc.CTM which simulates the losses and gains in power output due to cell-to-module (CTM) integration.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The new analytical models are required for bifacial solar cells and modules which provide greater accuracy with real world data acquired in the field. New modelling functions are needed for the evaluation of a wider range of module types, interconnection and cell technologies in more diverse operating situations and thus represent an important step for further optimisation. 

Solution

Significantly extended features now include the analysis of solar modules with bifacial solar cells and the freedom to define arbitrary operation conditions. SmartCalc.CTM now supports module optimisation beyond laboratory conditions for an even greater variety of technologies.

The new analytical models not only allow bifacial solar cells but also include a more detailed analysis of backsheets and their impact on module power. Selection of the irradiance spectrum, the angle of incidence distribution as well as the intensity of the incident light now allows the evaluation of PV module behavior at non-Standard Testing Conditions (STC).

The determination of operation temperatures within solar modules plays a vital role in evaluating new module concepts. A novel thermal model has been implemented allowing the calculation of the module temperatures depending on operation conditions and module setup. The power output of half-cell, shingle or glass-glass-modules deviates from conventional modules at most operating conditions. Some module concepts may have a disadvantage at STC, yet under realistic environmental conditions may improve or even outperform.

The new SmartCalc.CTM version can consider thermal effects in the module efficiency analysis. With this feature, the impact of thermal material properties and module design on module power output can be evaluated at various environmental conditions. Also, the electrical models have been extended to cater to the increase in flexibility in operation conditions of the solar cell and cell interconnections. Low light, high temperature and new interconnection concepts are now modelled more accurately. This makes it possible to evaluate both cell and module losses directly in terms of peak power loss.

Applications

Bifacial solar cell CTM. 

Platform

The new release includes bifaciality and arbitrary operation conditions. Users can now investigate the effect of a second photoactive side of the solar cell within the module stack. Unchanged remain flexibility and user friendliness: The module setup can be loaded from database files or edited directly in a graphical user interface.

Availability

Currently available.

Screen shot of a power waterfall diagram from the software package SmartCalc.CTM of Fraunhofer ISE, where the efficiency gains and losses of a bifacial glass-glass module due to optical and electrical effects are displayed. The module is operated at 800 W/m² front irradiance and 250 W/m² rear irradiance and 25 °C. Image: Fraunhofer ISE
7 October 2025
San Francisco Bay Area, USA
PV Tech has been running an annual PV CellTech Conference since 2016. PV CellTech USA, on 7-8 October 2025 is our third PV CellTech conference dedicated to the U.S. manufacturing sector. The events in 2023 and 2024 were a sell out success and 2025 will once again gather the key stakeholders from PV manufacturing, equipment/materials, policy-making and strategy, capital equipment investment and all interested downstream channels and third-party entities. The goal is simple: to map out PV manufacturing in the U.S. out to 2030 and beyond.

Read Next

September 11, 2025
US cell manufacturer ES Foundry is proceeding with expansion plans despite a six-month delay due to recent trade and tax credit policy uncertainties.
Premium
September 11, 2025
PV CellTech USA: US cell manufacturer ES Foundry’s CEO Alex Zhu discusses his company's rapid ascent, strategic technology choices and the challenges of operating in a shifting policy environment.
September 10, 2025
At RE+ 2025, companies launched AI-driven platforms, terrain-following trackers, low-carbon modules, and advanced energy management solutions for solar and storage.
September 8, 2025
Vaisala has launched a new hail alert system aimed at solar operators grappling with an increasingly costly problem for PV installations.
September 5, 2025
Scientists from Germany and Saudi Arabia have discovered that perovskite thin-film cells are compatible with current industry standard silicon solar cells, which they claim is a “crucial step toward the industrialisation of perovskite silicon tandem solar cells”.
September 4, 2025
Fraunhofer ISE has completed testing work of grid-forming inverters currently available in the energy industry.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines