Fraunhofer ISE ups III-V cell efficiency to 39.7 percent

September 22, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

The Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg has surpassed its own European multi-junction III-V solar cell efficiency record, recently reaching 37.6 percent. The new record of 39.7 percent was achieved using a front-side network of thin metal wires that transport large currents but with low resistance.

“We have improved the contact structures of our solar cells,” commented Frank Dimroth, Head of the III-V – Epitaxy and Solar Cells Group at Fraunhofer ISE. “As a result, using the same semiconductor structures, we now achieve the higher efficiency when converting sunlight into electricity.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Fraunhofer ISE has been working on a new program for the theoretical calculation of optimal contact structures. Based on this work sponsored by the EU Project Fullspectrum (SES6-CT-2003-502620), the new cells are especially suitable for situations of inhomogeneous radiation, as occurs in the case of concentrated sunlight between 300 and 600 suns.

“We are very pleased to have advanced a further decisive step in such a short amount of time,” says Dr. Andreas Bett, Department Head at Fraunhofer ISE. “Highest conversion efficiencies help the young technology to become market competitive and to further sink the costs of generating electricity from the sun for the future.”

The solar cell structures consist of more than 30 single layers, which are deposited on a germanium substrate by means of metal-organic vapour-phase epitaxy (MOVPE).

Figure 1: Photo of the typical metal finger structure on the front side of a GaInP/GaInAs/Ge concentrator solar cell with a diameter of 2mm.

Figure 2: Photo of a solar cell wafer with different concentrator solar cell structures.

Read Next

February 16, 2026
Axis Energy has signed a memorandum of understanding (MoU) with the Government of Odisha to develop up to 5GW of renewable energy capacity in the state. 
Premium
February 16, 2026
As Australia’s renewable sector matures, the coupling of solar and storage is emerging as the dominant paradigm for large-scale projects.
February 16, 2026
A 77.5MW PV plant in Estonia is to be coupled with a 55MW/250MWh battery energy storage system to create what is claimed will be the country’s largest hybrid project.
February 16, 2026
EIB is investing US$40 million to construct and operate three PV plants in southwestern Romania, with a combined capacity of 190MW.
February 16, 2026
Enfinity has expanded a bond facility with the Eiffel Investment Group to US$183 million, to further its work in US solar and BESS.
February 16, 2026
The Philippines will launch a number of renewable energy auctions between 2027 and 2035 for at least 25GW of capacity each year.

Upcoming Events

Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
October 13, 2026
San Francisco Bay Area, USA