Fraunhofer ISE ups III-V cell efficiency to 39.7 percent

September 22, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

The Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg has surpassed its own European multi-junction III-V solar cell efficiency record, recently reaching 37.6 percent. The new record of 39.7 percent was achieved using a front-side network of thin metal wires that transport large currents but with low resistance.

“We have improved the contact structures of our solar cells,” commented Frank Dimroth, Head of the III-V – Epitaxy and Solar Cells Group at Fraunhofer ISE. “As a result, using the same semiconductor structures, we now achieve the higher efficiency when converting sunlight into electricity.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Fraunhofer ISE has been working on a new program for the theoretical calculation of optimal contact structures. Based on this work sponsored by the EU Project Fullspectrum (SES6-CT-2003-502620), the new cells are especially suitable for situations of inhomogeneous radiation, as occurs in the case of concentrated sunlight between 300 and 600 suns.

“We are very pleased to have advanced a further decisive step in such a short amount of time,” says Dr. Andreas Bett, Department Head at Fraunhofer ISE. “Highest conversion efficiencies help the young technology to become market competitive and to further sink the costs of generating electricity from the sun for the future.”

The solar cell structures consist of more than 30 single layers, which are deposited on a germanium substrate by means of metal-organic vapour-phase epitaxy (MOVPE).

Figure 1: Photo of the typical metal finger structure on the front side of a GaInP/GaInAs/Ge concentrator solar cell with a diameter of 2mm.

Figure 2: Photo of a solar cell wafer with different concentrator solar cell structures.

Read Next

October 31, 2025
Solar Media Market Research looks into the the Section 232 ruling in the US, tackling the questions that need to be understood.
October 31, 2025
US independent power producer (IPP) Treaty Oak Clean Energy has signed two environmental attribute purchase agreements (EAPA) with social media and data giant Meta.
October 31, 2025
US thin-film module manufacturer First Solar has unveiled plans to build a new 3.7GW manufacturing plant in the US in 2026.
October 31, 2025
Australia's solar and energy storage sectors delivered transformative performance during the third quarter of 2025, with grid-scale solar generation reaching 1,699MW average output while battery systems expanded capacity by 2,936MW since Q3 2024.
October 31, 2025
Acen Australia has committed to recycling around one million solar modules from its 400MW Stubbo solar PV power plant in New South Wales.
October 30, 2025
Scatec posted development and construction (D&C) revenues of NOK1,760 million (US$175.1 million) in the third quarter of this year.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany