Fraunhofer ISE ups III-V cell efficiency to 39.7 percent

September 22, 2008
Facebook
Twitter
LinkedIn
Reddit
Email

The Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg has surpassed its own European multi-junction III-V solar cell efficiency record, recently reaching 37.6 percent. The new record of 39.7 percent was achieved using a front-side network of thin metal wires that transport large currents but with low resistance.

“We have improved the contact structures of our solar cells,” commented Frank Dimroth, Head of the III-V – Epitaxy and Solar Cells Group at Fraunhofer ISE. “As a result, using the same semiconductor structures, we now achieve the higher efficiency when converting sunlight into electricity.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Fraunhofer ISE has been working on a new program for the theoretical calculation of optimal contact structures. Based on this work sponsored by the EU Project Fullspectrum (SES6-CT-2003-502620), the new cells are especially suitable for situations of inhomogeneous radiation, as occurs in the case of concentrated sunlight between 300 and 600 suns.

“We are very pleased to have advanced a further decisive step in such a short amount of time,” says Dr. Andreas Bett, Department Head at Fraunhofer ISE. “Highest conversion efficiencies help the young technology to become market competitive and to further sink the costs of generating electricity from the sun for the future.”

The solar cell structures consist of more than 30 single layers, which are deposited on a germanium substrate by means of metal-organic vapour-phase epitaxy (MOVPE).

Figure 1: Photo of the typical metal finger structure on the front side of a GaInP/GaInAs/Ge concentrator solar cell with a diameter of 2mm.

Figure 2: Photo of a solar cell wafer with different concentrator solar cell structures.

Read Next

February 2, 2026
Independent power producer (IPP) TerraForm Power has acquired a 1.56GW solar project in Lee County, Illinois from Hexagon Energy.
February 2, 2026
Private equity firm Younan Company has launched an 880MW solar-plus-storage project in California, marking its entry into utility-scale solar PV in the US.
February 2, 2026
The price of solar PPAs signed in North America increased 3.2% between the third and fourth quarters of 2025, reaching a high of US$61.67/MWh.
February 2, 2026
The rate of installation of new self-consumption PV systems in Spain fell slightly last year, according to data from trade body the Spanish Photovoltaic Union (UNEF).
February 2, 2026
India’s Union Budget 2026-27 reinforces government support for renewables through duty exemptions and infrastructure spending.
Premium
February 2, 2026
PV Tech Premium explores the impacts that the EU's revised cybersecurity review will have on the continent's solar industry.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA