IMEC achieves new record efficiencies for large-area epitaxial thin-film silicon solar cells

Facebook
Twitter
LinkedIn
Reddit
Email

IMEC has achieved large-area (70cm2) epitaxial solar cells with efficiencies reaching 16.3% on high-quality substrates. Efficiencies of up to 14.7% were attained on large-area low quality substrates. IMEC accomplished 20μm-thick high-quality epitaxial silicon stacks on top of a highly-doped high-quality substrate and low-cost upgraded metallurgic grade (UMG) type, multicrystalline Si substrate.

“These efficiencies of up to 16.3% on high-quality substrates and of up to14.7 % on low-cost substrates show that industrial-level efficiencies are within reach for this technology;” said Jef Poortmans, director imec energy/solar program. “By implementing copper-based contact schemes, we can further increase the efficiency making epitaxial thin-film silicon solar cells on low-cost wafers an interesting industrial technology.”

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The p+-type surface field (BSF), the p-type base and the n-type front-side emitter were developed with chemical vapor deposition. The light trapping method uses plasma texturing of the front surface combined with an internal porous silicon Bragg reflector at the epitaxial/substrate interface. The cells on the high-quality substrate are contacted with copper plating.

Those cells made on low-quality substrates achieved metallization with screen-printing, the last step after the formation of the diffused front surface field (FSF) and the silicon nitride antireflection coating. The epitaxially-grown wafer equivalent substrates are completely compatible with standard industrial solar cell processing.

Caption: IMEC’s large-area (70cm2) epitaxial solar cell on high-quality substrate has an efficiency of up to 16.3%.

Caption: Imec epitaxial thin-film silicon solar cell on low-quality substrate with screen printed metal lines achieving efficiencies of up to 14.7%.

Read Next

September 12, 2025
ACME Venus Urja has secured INR3.8 billion (US$43 million) to develop and construct a solar-plus-storage project in Barmer, Rajasthan.
Premium
September 12, 2025
Vote Solar's Sean Garren tells PV Tech Premium that Georgia Power's latest IRP is 'skewed so heavily towards fossil fuels'.
September 11, 2025
Founder Group has won a RM10 million (US$2.3 million) engineering, procurement, construction and commissioning contract for a 30MW solar plant in Malaysia.
September 11, 2025
German renewable energy developer ib vogt has signed a 70MW solar PV virtual power purchase agreement (vPPA) in Romania.
September 11, 2025
Madison Energy Infrastructure has raised US$800 million to accelerate the deployment of clean energy assets across the US. 
September 11, 2025
The PEARL Consortium has developed perovskite solar cells with carbon electrodes with a conversion efficiency of 21.6%.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 16, 2025
Athens, Greece
Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines