IMEC touts industrial crystalline Si solar cell efficiencies of 17.4 percent

October 15, 2007
Facebook
Twitter
LinkedIn
Reddit
Email
IMEC has claimed a breakthrough in crystalline Si
solar cell efficiencies that have reached an efficiency of 17.4 percent
with the potential to scale to efficiencies above 20 percent with a
decrease in cell thicknesses, according to the R&D centre based in
Leuven, Belgium. 

The breakthrough comes from several years of research
into a new cell concept dubbed ‘i-PERC’ (Passivated Emitter and Rear
Cell). The PERC technology was not previously applicable to volume
production solar cell applications; however the ‘i’ addition denotes
‘industrial’ use.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

 

According to IMEC, the new process uses very thin
silicon layers (<180µm) in which the classical Al back surface
field, covering the whole rear of the Si solar cell, is replaced by
local Al-alloyed contacts. In this process the rear is passivated by a
dielectric stack, in which the contact openings are realized by laser
ablation. Subsequently, an Al contact layer is evaporated which is
fired in a belt-line furnace to create local back-surface fields.

IMEC
also developed small-area crystalline Si solar cells with evaporated
contacts. Lab-scale silicon solar cells have been realized, where for
the first time the i-PERC process has been used as a method to
passivate the rear side and to create local contacts. At the front side
random pyramids are used in combination with a standard silicon nitride
layer to provide good optical properties and surface passivation.
The
evaporated Ti/Pd/Ag front contact grid is patterned by standard
lithography. First attempts immediately resulted in an efficiency of
19% with an impressive short-circuit current of more than 39mA/cm2, IMEC said.

 

 

Read Next

Premium
January 12, 2026
December 2025 saw record solar generation in Australia's NEM, with rooftop and utility-scale solar surging, but pricing volatility persisted.
January 11, 2026
Yanara has selected Gamuda Australia as the project delivery partner for the early contractor involvement phase of the Mortlake Energy Hub in Victoria.
January 9, 2026
The Chinese Ministry of Finance and the Taxation Administration issued an adjustment of export rebate policies for solar PV products and other items.
January 9, 2026
China’s market supervision body has warned of monopoly risks in the plans to consolidate the country’s polysilicon sector.
Premium
January 9, 2026
PV Tech Premium spoke with Crux on the trends to look forward in 2026 in the clean energy transferable tax credit market.
January 9, 2026
The US has withdrawn from a number of UN climate organisations, including the Framework Convention on Climate Change, International Renewable Energy Agency (IRENA) and Intergovernmental Panel on Climate Change.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland