IMEC touts industrial crystalline Si solar cell efficiencies of 17.4 percent

Facebook
Twitter
LinkedIn
Reddit
Email
IMEC has claimed a breakthrough in crystalline Si
solar cell efficiencies that have reached an efficiency of 17.4 percent
with the potential to scale to efficiencies above 20 percent with a
decrease in cell thicknesses, according to the R&D centre based in
Leuven, Belgium. 

The breakthrough comes from several years of research
into a new cell concept dubbed ‘i-PERC’ (Passivated Emitter and Rear
Cell). The PERC technology was not previously applicable to volume
production solar cell applications; however the ‘i’ addition denotes
‘industrial’ use.

This article requires Premium SubscriptionBasic (FREE) Subscription

Unlock unlimited access for 12 whole months of distinctive global analysis

Photovoltaics International is now included.

  • Regular insight and analysis of the industry’s biggest developments
  • In-depth interviews with the industry’s leading figures
  • Unlimited digital access to the PV Tech Power journal catalogue
  • Unlimited digital access to the Photovoltaics International journal catalogue
  • Access to more than 1,000 technical papers
  • Discounts on Solar Media’s portfolio of events, in-person and virtual

Or continue reading this article for free

 

According to IMEC, the new process uses very thin
silicon layers (<180µm) in which the classical Al back surface
field, covering the whole rear of the Si solar cell, is replaced by
local Al-alloyed contacts. In this process the rear is passivated by a
dielectric stack, in which the contact openings are realized by laser
ablation. Subsequently, an Al contact layer is evaporated which is
fired in a belt-line furnace to create local back-surface fields.

IMEC
also developed small-area crystalline Si solar cells with evaporated
contacts. Lab-scale silicon solar cells have been realized, where for
the first time the i-PERC process has been used as a method to
passivate the rear side and to create local contacts. At the front side
random pyramids are used in combination with a standard silicon nitride
layer to provide good optical properties and surface passivation.
The
evaporated Ti/Pd/Ag front contact grid is patterned by standard
lithography. First attempts immediately resulted in an efficiency of
19% with an impressive short-circuit current of more than 39mA/cm2, IMEC said.

 

 

Read Next

June 27, 2025
Indian solar manufacturer Premier Energies has commissioned its 1.2GW TOPCon solar cell manufacturing line at Fab City, Hyderabad, Telangana.
June 27, 2025
The UK government has decided it will not sign a Contract for Difference (CfD) with Xlinks for the 11.5GW Morroco-UK interconnector project.
June 27, 2025
Renewables investment platform Nexwell Power has signed a round of power purchase agreements (PPAs) with “one of the largest” US tech companies for solar PV capacity to be built in Spain.
June 27, 2025
Statkraft has signed PPAs with Better Energy to purchase energy from two solar power plants in Poland with a total capacity of 64GWh.
June 27, 2025
Solar developer Lightsource bp has signed a power purchase agreement (PPA) with a subsidiary of Taiwanese energy firm HD Renewable Energy (HDRE).
June 27, 2025
PV Tech spoke to Monika Paplaczyk about recent changes in the UK energy mix and opportunities for investors in the solar sector.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
June 30, 2025
10am PST / 6pm BST
Solar Media Events
July 1, 2025
London, UK
Solar Media Events
July 1, 2025
London, UK
Media Partners, Solar Media Events
July 2, 2025
Bangkok, Thailand
Media Partners, Solar Media Events
September 2, 2025
Mexico City, Mexico