LONGi´s Hi-MO N module: A new breakthrough with n-type to lead evolution of efficiency and energy yield

July 22, 2021
Facebook
Twitter
LinkedIn
Reddit
Email
LONGi’s Hi-MO N panel, the company’s maiden n-type module featuring TOPCon technology. Image: LONGi.

LONGi has launched its Hi-MO N module, its first bifacial module with n-type TOPCon cells, designed to deliver ultra- high value and lower levelised cost of electricity (LCOE) to utility-scale PV power plants.

Hi-MO N maintains LONGi’s optimal 182mm cell and 72-cell module size and adopts LONGi’s proprietary high performance cell (HPC) technique based on n-type TOPCon. The conversion efficiency is up to 22.3% and power reaches 570W in mass production.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Problem

The challenge for all module manufacturers remains to support customers to continue reducing LCOE, increasing module power and efficiency and save on balance of system (BOS) costs for their utility PV projects, giving them access to more econmic financial models. LONGi’s R&D teamhas maintained continuous focus and research on a variety of cell and module techniques.

From its leading mono PERC technology spanning P-type bifacial technology to M6 and M10 wafer standards, each of LONGi’s breakthroughs is based on the maximisation of industry value and reduction of LCOE. To continue those breakthroughs, a transition to a new technology platform was required.

Solution

The Hi-MO N, LONGi’s newly unveiled TOPCon module, uses the manufacturer’s HPC technique and is based on n-type TOPCon technology to achieve higher bifacial gains, better temperature coefficient and low irradiance performance, lower working temperature, better light-induced degradation (LID) and potential induced degradation (PID) performance. As a result, energy yield is 2-3% higher than that of mainstream p-type bifacial modules.

In tandem with “zero” cell damage and LONGi’s proprietary smart soldering technology, Hi MO N is PID-free under irradiance. The initial year degradation is under 1% and linear degradation is under 0.4%. Degradation of similar mainstream products is around 2% in its initial year, and linear degradation is approximately 0.45% per year. Calculated on a 30-year lifecycle, the conversion efficiency of Hi-MO N modules will be 2.45% higher than that of other mainstream products in the market.

In addition to high energy yield and low LID, Hi-MO N also shows its value in reducing BOS costs with its higher module efficiency. The 182mm-size module can minimise costs associated with racking, cable, inverter and labour. Its high conversion efficiency of 22.3% can enhance installed capacity by over 3.5% in areas of limited space and reduce BOS costs as well as costs of AC equipment and operations and maintenance throughout the life cycle of the power plants.

The energy yield and system cost savings during Hi-MO N lifecycle deliver higher values for customers, when compared to mainstream P-type bifacial modules in the market.

Applications

Utility-scale PV power plants.

Platform

Hi-MO N is verified and confirmed to be compatible with mainstream inverters and tracking systems. The Hi-MO N panel has following dimensions: 2256mm x 1133mm x 35mm, and a weight of 32.3kg.

Availability

The Hi-MO N panel is expected to be in volume production in the fourth quarter of 2021, becoming available for procurement in the following quarter.

LONGi and PV Tech are co-hosting a webinar exploring the benefits of the Hi-MO N panel, detailing how the new technology platform has enabled greater efficiencies and energy yields for utility-scale solar PV projects. The webinar is being hosted at 16:00 CET / 15:00 BST / 10:00 ET on 28 July 2021. To register for the webinar, click here.

Read Next

December 18, 2025
The latest edition of our print journal, PV Tech Power, is out today and available to download, where we deep dive into PV quality assurance.
Premium
December 18, 2025
PV Talk: Paul Gebhardt of Fraunhofer ISE discusses reliability issues facing advanced PV modules, an issue which isn't going anywhere.
December 17, 2025
T1 Energy has started construction on the 2.1GW first phase of its TOPCon cell manufacturing facility in Texas.
December 16, 2025
Ecoprogetti has installed a new 400MW module production facility in Oman, to be operated by American Advanced Clean Energy (AACE).
December 15, 2025
Solar manufacturer SEG Solar has started construction on a 3GW ingot and wafer manufacturing plant in Indonesia.
December 11, 2025
Floating solar PV (FPV) firm Ciel & Terre has unveiled a new floating structure, dubbed WattRack, with a rail-based structure.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland